بررسی تأثیر پارامترهای ورآیند تولید بر رفتار کامپوزیت Al(Zn)/Al₂O₃-\(\text{Al}_x\text{Cu}_y\) و سنتز احترافی

آرش خسروی، مهدی کلاته

دانشکده معدن و مکانیک دانشگاه یزد

* mkalantar@yazd.ac.ir

<table>
<thead>
<tr>
<th>جایگاه</th>
<th>اطلاعات مقاله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1394</td>
<td>13 مرداد 1394</td>
</tr>
<tr>
<td>1395</td>
<td>2 دی 1394</td>
</tr>
</tbody>
</table>

کلید واژه:
کامپوزیت درجا، سنتز احترافی، Al₂O₃-\(\text{Al}_x\text{Cu}_y\) سیستم، آلکنی، آنزین، آزمایش‌های شیمیایی,

چکیده:
کامپوزیت‌های \(\text{Al}(\text{Zn})/\text{Al}_2\text{O}_3-\text{Al}_x\text{Cu}_y\) خنثیات و مقاومت در محیط‌های نسبی با از جایگاه ورود آب‌های برخوردار می‌باشند. تولید کامپوزیت در فرآیند پرورده‌ای ورودی \(\text{Al}_x\text{Cu}_y\) روش شعله‌سازی مکانیکی همراه با سنتز احترافی مورد بررسی قرار گرفت. در این راستا زمان‌های مختلف آسیا کاری زنن دهه 80 ساعت برای نمونه‌های \(\text{Al}(\text{Zn})/\text{Al}_2\text{O}_3\) با مقدار ۱% از \(\text{Al}_2\text{O}_3\) و ۶% از ZnO در نظر گرفته شده است، همچنین عملیات \(\text{Al}(\text{Zn})/\text{Al}_2\text{O}_3-\text{CuO}-\text{ZnO}\) برای مدت زمان یک ساعت انجام شده است. اثر دمای عملیات حرارتی میزان ZnO و زمان آسیاکاری بر روی ریزشی‌کاری ترکیب فازی، ترکیب آنیسی و سنتی سنجی و دیگر موارد به‌صورت کلی به‌صورت افزایش می‌آید. تغییرات در روش روند پاسخ (RSM) با توجه به طراحی پایک به‌عنوان نشانه‌های فاکتوری و افزایش زمان آسیاکاری کاری کردن شکل‌گیری افزایش و اندما زریستنی‌ها با ۲۰ نانومتر کاهش می‌پذیرد. برای نمونه‌ها تبدیل XRD ساخت آلکنی پیک‌های \(\text{Al}(\text{Cu})/\text{Al}_2\text{O}_3\) به چند ضایع بر روی اندازه‌های XRD برای سنتز تا مقدار ۷۰ درصد و ترکیب تا ده به‌عنوان نمونه‌های کامپوزیتی کاهش ای جهت با سنتز تا مقدار ۷۰ درصد و ترکیب تا ده به‌عنوان نمونه‌های کامپوزیتی کاهش ای جهت با سنتز تا مقدار ۷۰ درصد و ترکیب تا ده به‌عنوان نمونه‌های کامپوزیتی کاهش ای جهت با سنتز تا مقدار ۷۰ درصد و ترکیب تا ده به‌عنوان نمونه‌های کامپوزیتی کاهش ای جهت با سنتز تا مقدار ۷۰ درصد و ترکیب تا ده به‌عنوان NMR می‌باشد. ترکیبات بین آلکنی کاهش یافته و در نتیجه می‌تواند کاهش دمای زیره بر همراه با این‌ها ناشده باشد.

83
درون این ساختار قرار می‌گیرند. سرانجام با رسیدن به حالت مالیاتی، نخ جوش خوردن و شکست ذرات برای می‌شود و شرایط ثابت نگه داشته و توزیع همگن ذرات تقویت کننده در ذرات فاز های آلوئینیوم به دلیل ویژگی‌های مختلف استحکام، تلاقی و مقاومت سایه بالا. وزن کم و هدایت حرارتی و الکتریکی خوب و مواد مناسب برای استفاده در کاربردهای مختلف صنعتی می‌باشند.

یافته‌گر ذرات تقویت کننده آلوئینیوم با دسته‌بندی‌های

1- Self-propagating High-temperature Synthesis

2- In-Situ
قرار گرفته است که از جمله می‌توان به کامپوزیت Al-SiC و Al-Si3N4 اشاره نمود. در مرجع [22] تأثیر توان بخار مپار که در دمای تقسیم کننده، سرعت لزگی و فاصله لزگی و تغییر شرایط بهبوده از مناطقی فوق برای داشتن کمترین نرخ سایش کامپوزیت مورد بررسی قرار گرفته است. در مرجع [23] بهینه سازی پارامترهای زمان انحلال، مدا و زمان پرسه‌سازی در راستای مکانیزم خواص مکانیکی انجام گرفته است. در این تحقیق از مدل چهت بهینه سازی پارامترهای فاصله تولید کامپوزیت Al(Zn)-CuAl2-3Cu2O به روش سنتز اختراعی (روش درج) در سیستم Al-ZnO-CuO راستای رسیدن به ساختار مکانیکی و ناحیه استفاده گردیده است. پارامترهای مورد بررسی ترکیب کامپوزیت، زمان آسیبی و دمای عملیات حرارتی می‌باشد به طوری که نمونه‌های مختلف کامپوزیت در پاترهند شرایط مختلف از ترکیب (ZnO:250/100 و 15/5) زمان آسیبی به ساعت (XRD, EDX از بررسی فازی) خواص به‌گالی و سختی مورد شرایط بارگذاری (SEM, EDX، EDX خواص بارگذاری) در انتقال گزینه قرار گرفتند و در نهایت در مدل RSM مورد بررسی و در نهایت در جهت مکانیزم مقادیر سختی و چگالی بهینه سازی شدند.

2- فعالیت‌های تجاری

در این تحقیق، بوده‌های آلومینیوم (Merck) و Loba با خلقوص 99/8٪ و اندکی اکسید رودی (با Loba) با خلقوص 99/5٪ و اندکی اکسید (Merck) مورد استفاده قرار گرفتند. در مطالعات مورد بررسی قرار گرفته است [31] در یک سری از مطالعات از سه روش پاسخ (RSM) برای بهینه سازی پارامترهای ممکن شوی مدل RSM (ساختمان و خورشیدی و ...) تعدادی از کامپوزیت‌ها و مطالعه‌ها مورد گزارش گردید.

3 Response Surface Methodology
XL30 SERIES مدل Philips نهایت پارامترهای قرار گرفته‌ای راهانداز مدار لوبای 99% و اندازه متوسط 10 میکرومتر به عنوان مواد اولیه مورد استفاده قرار گرفته‌اند. مخلوط پودر مواد اولیه بر ترکیبی درصد مختلف (21-30):

\[C_1: \text{Al -10\%wt ZnO -6\%wt CuO , } C_2: \text{Al -15\%wt ZnO -6\%wt CuO , } C_3: \text{Al -20\%wt ZnO-6\%wt CuO} \]

برای مدت زمان‌های مختلف تا حدایکثر شست ساعت در یک آسیاب Goleh‌ای بر انرژی (مدل نانوشت 210) با نسبت به س 정도، گلاله‌های آلومینیا با اندازه 20-100 میکرون، نسبت گلال به پودر 1:10 و انرژی روش سرد نک محدودی با اعمال فشار 250 مگا باسکال به شکل قرص‌هایی با قطر 12 میلیمتر و ارتقاء 4 میلیمتر تبدیل شده و سپس در کوره لوله‌ای تحت انرژی آرگون در دماهای 960 و 1150 درجه سانتی‌گراد تحت عملیات حرارتی قرار گرفته‌اند. تغییرات فاصله حاصل شده در پودر و نمونه‌های زینتر شده توسط دستگاه پراش اشعه ایکس (Philips Xpert) با پرتو موج \(\mu=542 \) CuKα و طول موج 0/1785 انجام شده مطالعه قرار گرفته‌است. همچنین از مدل TDA: Differential thermal analysis برای اندازه گیری خاص جهت محاسبه اندازه کریستالیت‌ها با استفاده از روش وایانسون- هال استفاده شده است (35).

\[^5 \text{Box-behnken design} \]

\[^4 \text{DTA: Differential thermal analysis} \]
جدول 1- نام و سطوح فاکتورهای تأثیر گذار

<table>
<thead>
<tr>
<th>نام فاکتور</th>
<th>سطح پایین</th>
<th>سطح وسط</th>
<th>سطح بالا</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما تغییر رویداد (درجه سانتی گراد)</td>
<td>690</td>
<td>920</td>
<td>1150</td>
</tr>
<tr>
<td>زمان آسیاکاری (ساعت)</td>
<td>0</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>میزان ZnO (درصد وزنی)</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

۳- نتایج و بحث

۳-۱- آسیاکاری

چگونگی پیشرفت واکنش‌های آلومینو‌ترمیک و واکنش‌های احتمالی دیگر مانند تشکیل ترکیبات بین فلزی در حين آسیاکاری بر اساس تابع منحنی های DTA و الگوی برش اشعه ایکس مورد مطالعه قرار گرفته است. الگوی برش اشعه ایکس مربوط به نمونه‌های C۱، C۲ و C۳ از زمان‌های صفر و شدت تابع آسیاکاری در شکل (۱) آمده است. با مقایسه شکل‌های (۱-الف) تا (۱-ج) تفاوت چندانی در نحوه پیشرفت واکنش در نمونه‌ها با توجه به درصد‌های مختلف اکسید روي مشاهده شد. از طرفی مشاهده می‌شود که حتی بعد از شدت تابع آسیاکاری به میزان جزئی واکنش‌های اصلی انجام گرفته است. وجود دو پیک با شدت کم از (Al۲O۳) و CuO به طور کامل حذف شده‌اند که تمام پیک‌های CuO به طور کامل جذب شده‌اند که می‌تواند با دیل آمورف شدن آن باشد. نوع ترکیبات بین فازی انجام شده در این مطالعه با نتایج کارهای مشابه متفاوت است. [۳۰] که می‌تواند با دیل تفاوت در متغیرهای مربوط به آسیاکاری همجون نوع آسیا، سرعت دورال، تعداد گاز ... باشد. افزایش زمان آسیاکاری سبب کاهش شدید
درجه سانتی‌گراد به ترتیب بیاینت نمونه‌های صفر، سی و شصت ساعت آسیاکاری مربوط به ذوب آلومینیوم می‌باشد که به دماهای بایین تا 400 سانتی‌گراد است. علت این موضوع به فعال‌سازی مکانیکی بوده وارد شدن عناصر آلیاژی به داخل آلومینیوم در ضمن آسیاکاری و عملیات حرارتی

شکل 1- انگیزه پرایش اشعه ایکس در زمان‌های مختلف آسیاکاری

الف) نمونه C1، C2 (نمونه C1 نمونه C2) نموده لازم به ذکر است که آلیاژ Al2O3 از نوع کورونوم می‌باشد.
<table>
<thead>
<tr>
<th>زمان آسیاکاری (ساعت)</th>
<th>آلمینیوم (نحوه)</th>
<th>آلومینیوم (نحوه)</th>
<th>آلومینیوم (نحوه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/13</td>
<td>39</td>
<td>0/07</td>
<td>30</td>
</tr>
<tr>
<td>10/17</td>
<td>24</td>
<td>0/09</td>
<td>31</td>
</tr>
<tr>
<td>10/13</td>
<td>25</td>
<td>0/06</td>
<td>30</td>
</tr>
<tr>
<td>10/21</td>
<td>20</td>
<td>0/09</td>
<td>40</td>
</tr>
<tr>
<td>10/13</td>
<td>38</td>
<td>0/05</td>
<td>40</td>
</tr>
<tr>
<td>10/19</td>
<td>33</td>
<td>0/08</td>
<td>60</td>
</tr>
</tbody>
</table>

چندین آزمایش گرفته شده، نشان دهنده تغییرات زمان و درجه افزایش چهار درصدی بوده است. تغییرات شامل تغییرات در درجه تصفیه، کمک به کاهش ورقه‌های گرم‌کننده و دمای سطح آلومینیوم در شرایط مختلف بوده است. در عوارض چنینی، آلومینیوم به‌طور بیشتری می‌تواند در شرایط مختلف به‌طور کامل مورد استفاده قرار گیرد.

نتایج آزمایش‌ها نشان می‌دهد که کاهش درجه تصفیه و تغییرات در زمان آسیاکاری می‌تواند تأثیراتی در طراحی و تولید آلومینیوم داشته باشد. در عوارض نتایج دیگر، آزمایش‌های قبلی نشان داده بود که نسبت به آلومینیوم، آلومینیوم کاهش می‌یابد. در اینجا نیز نتایج نشان می‌دهند که آلومینیوم به‌طور کامل می‌تواند در شرایط مختلف به‌طور کامل مورد استفاده قرار گیرد.

 العمر و مهندسی سرامیک

جدول 3- تغییرات اندازه دانه و کرنش شیب‌های برای زمان‌های مختلف آسیاکاری

نتایج نشان می‌دهد که در عوارض نتایج دیگر، آزمایش‌های قبلی نشان داده بود که نسبت به آلومینیوم، آلومینیوم کاهش می‌یابد. در اینجا نیز نتایج نشان می‌دهند که آلومینیوم به‌طور کامل می‌تواند در شرایط مختلف به‌طور کامل مورد استفاده قرار گیرد.
نمایه نمودن نمونه‌های مختلف کامپوزیتی که در شرایط متغیرت زمان آسیاکاری‌ها، دما زینتر و ترکیب

table 3- سخنی و دانشی اندازگیری شده در شرایط مختلف زمان آسیاکاری و دما زینتر

<table>
<thead>
<tr>
<th>دانشی</th>
<th>مقدار سخنی</th>
<th>زمان آسیاکاری</th>
<th>دما زینتر</th>
<th>اکسید روی آزمایش</th>
<th>(ساعت)</th>
<th>(درجه‌سانتی گراد)</th>
<th>gr/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>115</td>
<td>80</td>
<td>2/575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>90</td>
<td>84</td>
<td>2/528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>90</td>
<td>84</td>
<td>2/528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>115</td>
<td>117</td>
<td>2/645</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>120</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>94</td>
<td>2/645</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>120</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>94</td>
<td>2/645</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>117</td>
<td>2/710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمایش شده در نمودار Minitab
ثبت اکسیژن روزی و انفجار میزان اکسیژن روی در مقاادر
ثبت زمان آسیابگری سختی همواره افزایش یافته است. در
شکل‌های (4–b) تا (6–b) با افزایش میزان اکسیژن روی در
مقاادر ثابت دما همواره سختی افزایش می‌یابد. اما در مقاادر
ثبت میزان اکسیژن روز را با انفجار دمای زیتر همواره
سختی افزایش نیافته و دارای روند منیتی نیست.

شکل‌های ۴ و ۶ نمودار هم ترک مربوط به سختی بر
حسب پارامترهای زمان-ترکیب درصد با ثابت
نگهدارشتن دما، دما-ترکیب درصد با ثابت
زمان و ج. دما-زمان با ثابت نگهدارشتن ترکیب درصد
اکسیژن روی را نشان می‌دهد. با مقایسه شکل‌های (4–الف)
(5–الف) و (6–الف) با انفجار زمان آسیابگری در مقاادر
دما در زمینه ۶۰۰°C (ب) آسیابگری نشده و ج. ۲۰٪ اکسیژن روی.
شکل ۵- نمودار هم تراز سختی بر حسب پارامترهای دمای زینتی، زمان آسیاکاری و درصد اکسید روی در شرایط
الف) دمای زینتی (°C ۹۰۰، ب) ۳۰ ساعت آسیاکاری و ج) ۱۵٪ اکسید روی.

شکل ۶- نمودار هم تراز سختی بر حسب پارامترهای دمای زینتی، زمان آسیاکاری و درصد اکسید روی در شرایط
الف) دمای زینتی (°C ۱۱۵۰، ب) ۶ ساعت آسیاکاری و ج) ۲٪ اکسید روی.
در شکل‌های (4-6) تا (6-8) با افزایش زمان آسیاکاری در مقادیر ثابت دمای زینتر همواره سختی افزایش می‌یابد اما در مقادیر ثابت زمان آسیاکاری با افزایش دمای زینتر همواره سختی افزایش ییدا نمی‌کند و دارای روند معنی‌نی نمی‌باشد. علت افزایش سختی با افزایش میزان درصد اکسید روی مربوط به افزایش کسر حجمی ذرات Al2O3 برای نمونه‌های C3 و C1 در C1 از 15 تا 20 به میزان 25 درصد درجه سانتیگراد حاصل شدند در شکل 7 آمده است.

![تصویر میکروسکوپ الکترونی روبشی از نمونه کامپوزیت شست ساعت آسیاکاری شده و تفحوشی شده در درجه سانتیگراد الف (C3 و C1) به علت پیشرفت بودن مقدار ZnO و انجام شدیدتر واکنش آلومینیومیک مقداری این حفرات و تخلخل‌ها پیشتر برای هر دو نمونه C3 و C1 تیزی‌های شامل مقادیری حفره و تخلخل نیز می‌باشد که علت آن واکنش‌های شدید احتراقی و عمل تفجوشی با سرعت زیاد می‌باشد که نتیجه می‌باشد.
مراجع

[36] Das, D. Chatterjee, P. P. Manna, I. and