بررسی خواص نانو سرامیک‌های پایه اکسید ایتریوم

سید مهدی رفیعانی ۱، محمدرضا شکوهی مهر ۲

۱ گروه مهندسی مواد، دانشکده فنی و مهندسی گلیانگ، اصفهان
۲ گروه مهندسی شیمی و پیوایزی، دانشکده مهندسی، دانشگاه ملی سلول، کرمان جنوبی

*rafiae@gut.ac.ir

اطلاعات مقاله:
دریافت: ۲۲ خرداد ۱۳۹۴
پذیرش: ۳ دی ۱۳۹۴

کلید واژه:
ستر احتراقی، خواص نانو، لومینسانس، نانواکه‌ها، مواد فسفری

۱ مقدمه

برای طراحی نور سفید انتقال می‌شود. حال با این است که
این مواد فسفری دارای طیف گسترده و بسیار متنوع هستند
و در این میان اکسید ایتریوم به دلیل برخورداری از شیب
بلوری مکشوف و خواص مختصر برقی که در پدیده وسیع تر
دارد به شدت مورد توجه قرار گرفت. است. بنا به این بسیاری از
محققان خواص نانو اکسید ایتریوم که بوده‌ای لاتنیتی به
ستار کرده و همچنین این اکسید از نظر مطلوب به قرار داده‌اند
[۱۰-۱۴]. زمینه‌ای که این فسفر توسط پروپایم دوب دوش و تحت
تابش نور ماورایی به نقص قرار گیرد نور قرمز رنگ درخشانی از

÷حتمی علمی پژوهشی
دوره ۶، شماره ۳، تابستان ۱۳۹۶

فصلنامه علمی پژوهشی
علم و مهندسی سرامیک

۸۵
بررسی خواص نوری نانو سرامیک‌های پایه اکسید اینتربروم

خود ساطع می‌نماید که برای طیف گسترده‌ای از کاربردها در زمینه‌های صفحات نمايش و لیزر مناسب می‌باشد [13-11].
حال یا دانست که ریز ساختار نانو فسفرها و خواص نوری آنها به پارامترهای بسیاری از جمله شرایط فرآیند سنتز و باریک‌سازی آنها اثر می‌گذارد. روش سنتز احتمالی به دلیل اقدامات و سریع بودن به میزان زیادی مورد توجه محققان قرار گرفته است [14]. علاوه بر ذریت، اکسید بلده آنکه غیر سرمایشی می‌باشد غالباً به عنوان حلول‌های سازگار با محیط زیست در فرآیندهای شیمیایی و صنعتی در نظر گرفته می‌شود. اما مطالعه های تحقیقی که قبلی روي ناحیه موضوع انجام گرفت مشخص که خواص فیزیکی این دو نوع حلول بسیار متفاوت بوده و دارای رفتارهای متفاوتی در طی فرآیند سنتز احتمال می‌باشد [16]. دبیزه‌های حاضر نیز با استفاده از روش سنتز احتمالی و به‌کمک Y2O3: Eu3+ سوخت اوره با استفاده از روش تحقیق‌های آزمایشی و سپس در سطوح مختلف تحت عملیات حرارتی باز پخت قرار گرفت. سپس ریز ساختار این ماده اکسیدی با استفاده از مطالعه شبیه‌سازی مربوط به سنتز احتمالی و همچنین نتایج مربوط به طیف‌های اپراش (توسط اشعه ایکس) و همچنین میکروسکوپ‌های الکترونی مورد ارزیابی و واگذاری قرار گرفت.

2- فعالیت‌های تجربی

2-1- سنتز نانو مواد
برای پلید نانو پودر (Y1.92Eu0.08)O3 مورد استفاده قرار گرفت. مواد اولیه شامل نیترات اینتربروم Eu(NO3)3.5H2O، Nیترات پتاسیم (Y(NO3)3.6H2O)

2-2- آنالیز مواد
ساختار مواد تولید شده توسعه پرایش اشعه ایکس (XRD) و با طول موج Rigaku D/Max-3C) به‌کمک آن دوار و میان تایش مسی مورد بررسی قرار گرفت. شکل نانو ساختارهای توسعت میکروسکوپ الکترونی روی‌شی (FESEM ZEISS SUPRA 55VP، Germany) همچنین میکروسکوپ الکترونی عبوری (TEM 3010 PL Japan) انتشار با استفاده از یک ماتشین فتوولومنسنس (Horiba Jobin Yvon Fluorolog-

2-3- آنتی‌الکس مواد
ساختار مواد تولید شده ۱۵۴ nm را با دقت دارد و اندازه مولکول بالایی را دارد. همچنین ساختارهای توسعت میکروسکوپ الکترونی روی‌شی (FESEM ZEISS SUPRA 55VP، Germany) همچنین میکروسکوپ الکترونی عبوری (TEM 3010 PL Japan) انتشار با استفاده از یک ماتشین فتوولومنسنس (Horiba Jobin Yvon Fluorolog-
۳- نتایج و بحث

۳-۱- واکنش‌های اکسیداسیون و احیا

در واکنش‌های مربوط به فرآیند سنتز احیا، نیترات های اتیلنیوم و پروپیلوم و سوخت مورد استفاده به‌طور ترتیب دارای نیترات اکسید کننده و احیا کننده می‌باشند. برای محاسبات مربوط به درجه اکسید کننده و احیاکننده این واکنش‌ها این موارد اکسیدن تریاکس هفت تریاکس اکسید کننده می‌باشد. اما در مقابله کربن و هیدروژن دارای اثر احیاکننده حله و با علامت منفی در نظر گرفته می شود. لازم به توضیح است که در این محاسبات نیتروژن خشیبی می‌باشد. این واکنش‌ها با توجه به توضیحات داده شده برای اکسید اکسید کننده نیترات‌ها و احیا کننده سوخت را می‌توان به صورت زیر محاسبه نمود:

\[\text{Y(NO}_3\text{)}_3 + \text{[Y(3-)+3(N(0)+9O(2))]} \rightarrow 15 \]

\[(\text{CH}_3\text{N}_2\text{O}) + \text{[C(-4)+4H(-1)+2N(0)+O(2)]} \rightarrow -6 \]

حال اگر اعداد محاسبه شده فوق را ساده کنیم مقد مطلق نسبت ظرفیت مواد اکسید کننده به احیا کننده برابر 5 به 2 می‌باشد. بنابراین برای رسیدن به ترکیب احیاکننده باستی باید به‌طور دو مول نیترات اتیلنیوم از ۵ مول سوخت احیا استفاده نمود. به این صورت جایی دیده می‌شود که نسبت محاسبه شده بین مقادیر نیترات اتیلنیوم و احیا اتفاق خیلی همانند باشد. این نتایج این است که در ساختارهای شیمیایی واکنش احیاکننده دایترور در جدول ۱ نشان داده شده است. در این جدول ۲۰، I, β, θ و α، پارامترهای محاسبه‌کننده ترکیب با استفاده از رابطه (Scherrer) μ(یکتیپ) توان از معادله شیرر T مناسب‌تر D و کمیته‌ها پارامترهای محاسبه کننده D که در این رابطه د متوسط اندازه نانوها، L طول موج اشعه ایکس، θ و β به ترتیب عکس و عرض یک تصرف ارتفاع‌ها و ابعاد شده می‌باشد. می‌توان بررسی اثر نوع حالت بر خاکستر و سوخت مولی در برخی مشخصات یک (۱۲۲) در طول‌های XRD در جدول ۱ نشان داده شده است. در این جدول ۲۰، I, α, β, γ و θ پارامترهای محاسبه‌کننده ترکیب با استفاده از رابطه (Scherrer) μ(یکتیپ) توان از معادله شیرر D و کمیته‌ها پارامترهای محاسبه کننده D که در این رابطه D متوسط اندازه نانوها، L طول موج اشعه ایکس، α, β, γ و θ به ترتیب زاویه عتیق و عرض یک تصرف ارتفاع‌ها و ابعاد شده می‌باشد. می‌توان بررسی اثر نوع حالت بر خاکستر و سوخت مولی در برخی
پیک، فاصله‌ی بین صفحات (22)، عرض یک در نصف ارتفاع
و شدت یک می‌باشد. دیده می‌شود که برای مواد سنتز شده
در مجاورت آب و مخلوطی از آب و اتانول، افزایش دمای
پخت مقدار L به ترتیب از حدود 0.5 درصد، 370، 410 به
55/10 تا 1/20 افزایش یافته است که این امر ممکن است
شنو پرامتر شبکه و انسباط شبکه بلوری می‌باشد همچنین

![دیاگرام‌های XRD نانو ساختارهای](image)

یک در حضور آب و مخلوطی از آب و اتانول سنتز شدهاند:

الف) در پخت شده در دمای 350 درجه سانتی‌گراد، یک در
400 درجه سانتی‌گراد و یک در درجه سانتی‌گراد.

جدول 1 - مشخصات پیک (2θ) در طیف‌های XRD

<table>
<thead>
<tr>
<th></th>
<th>I (a.u.)</th>
<th>β (°)</th>
<th>d (Å)</th>
<th>2θ (°)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>277.07</td>
<td>0.011</td>
<td>2.99057</td>
<td>29.8772</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>2447.39</td>
<td>0.009</td>
<td>3.05499</td>
<td>29.2330</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>479.35</td>
<td>0.015</td>
<td>3.08169</td>
<td>29.5979</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>1406.96</td>
<td>0.004</td>
<td>3.05499</td>
<td>29.2330</td>
<td>1000</td>
</tr>
</tbody>
</table>

るのはاً رشد بلورهای $\text{Y}_2\text{O}_3\cdot\text{Eu}^{3+}$ در مایع‌های با مخلوط آب و
اثانول تهیل می‌گردد [A]. در حالی که از آب به عنوان خلاء
استفاده گردد و اثبات مشاهده قانونی حرارتی در دماهای
بالاتر صورت ذیل‌تر، از نهجاً که میزان ترخ نفوذ بستگی به درجه

وسکوئتی آپ کمتر از اتانول است در حالی که هندای حرارتی
و ثابت دی الکتریک آن بهتری با آب از اتانول می‌باشد. در
نتیجه، هنگامی که آب در فرآیند سنتز احتمالی به عنوان خلاء
استفاده می‌شود، نفوذ و انتشار نرخ بیرون در محلول سریع‌تر و

دورة 6 شماره 2 تابستان 1396
حرارت داد این مکانیزم منجر به تشکیل ذرات بزرگ‌ترYP2O3:Eu3+ و می‌گردد. نقاط با شکل‌های ۲ و ۳ دیده می‌شود که اگر دمای عملیات حرارتی پراپیل۴۰۰و۸۰۰ است، همچنین، نقطه جوش اندازه‌پایینتر از آب است. بنابراین همانطور که در مقایسه شکل ۲ این گونه ذرات در دمای پایین تری تحت عملیات حرارتی پراپیل و تیخیر شود و در نتیجه این امر منجر به تسخیر شد. لب و اندازه بزرگ‌تر ذرات سنتز شده می‌گردد. مقایسه شکل‌های ۲ و ۳ دیده می‌شود که اندازه ذرات بزرگ‌تر و کم‌سیب‌تری شده در دمای‌های بالا در حلال آب بزرگ‌تری از نمونه‌های مشابه در

![عکس 1](image1.png)

شکل ۲- تصاویر میکروسکوپی FESEM Y2O3:Eu3+ با حلال آب در دماهای پراپیل (الف) ۸۰۰و۸۱۰۰و (ب) ۴۰۰و۸۱۰۰و (ج) ۲۰۰و۸۱۰۰و (د) ۰۰و۸۱۰۰و (ه) ۰و۸۱۰۰و.

![عکس 2](image2.png)

شکل ۳- تصاویر میکروسکوپی FESEM Y2O3:Eu3+ با حلال آب/الکل در دماهای پراپیل (الف) ۸۰۰و۸۱۰۰و (ب) ۴۰۰و۸۱۰۰و (ج) ۲۰۰و۸۱۰۰و (د) ۰۰و۸۱۰۰و (ه) ۰و۸۱۰۰و.
بررسی خواص نانو تانو سرامیک‌های پایه اکسید اینترروم

شکل ۴- تصاویر HRTEM مربوط به ماده فسفری

dv0.5Eu3+

که در حضور جالاتری (الف) آب و (ب) مخلوطی از آب و اتانول

ستن شده و سپس همه آنها در دمای C° ۱۰۰۰ تحت عملیات حرارتی پخت قرار گرفتند.

در شکل ۵ طیف انتشار مربوط به ماده ناتوانساختار

Y2O3:Eu3+

که در حضور جالاتری و همچنین دماهای مختلف فرآوری شستن داده شده است. همانطور که

در این شکل نشان داده شده است این ماده چندین یپک

انتشار در محدوده ۷۵۰ nm تا ۷۶۰ nm فرکانس‌های خشک‌الاذنی می‌باشد. نسبتاً ضعیف‌تری که در

۷۸۸nm و دمای ۶۲۴ درجه

D0.5F2

می‌باشد [19]. هنگامی که پویایی Eu3+

بیابند

بر این قرار گرفته باشد، در طیف انتشار

فوتولومینسانس، انتقال دو انتقال الکترونیکی

D0.5F2

است و به آن دارای شدت بالاتری نسبت به انتقال دو انتقال

D0.5F2

مغناطیسی (D0.5F2) می‌باشد. با این حال در بسیاری از

اوقات، تقارن پایین‌های Eu3+

به یک مرکز وارونگی

اختصاص ندارد و انتقال دو انتقال الکترونیکی به شکل جزئی

مجزا می‌باشد [20].

مطالعه با شکل ۵ ال‌ف زمانی که این محصولات در حضور

دومی ۶ شماره ۲ تابستان ۱۳۹۶
شکل 5- طیف انتشار نانو مواد Y$_2$O$_3$: Eu$^{3+}$ که افزایش در دمای 400°C (و بیشتر) در دمای 1000°C مورد عملیات حرارتی کلسینه شدن قرار گرفته‌اند. (تحمیک تحت طول موج 250 نانومتر).

4. نتیجه‌گیری

واکنش بین مواد اولیه از طریق مواد شیمیایی و همچنین آزمایشات کننده نیترات‌ها و اکسیژن‌های فلزی کننده سوخت بررسی گردید. به صورت جالب دیده می‌شود که نسبت محاسبه شده بین مقادیر نیترات ایتاتریم و اوره دقتا همان عدده است که در مواد شیمیایی واکنش احترق بدست می‌آید. نانوکریز مواد Y$_2$O$_3$: Eu$^{3+}$ با انتزاع‌های مجدد توانست 50 nm به روش احترقی در حضور آب و یا مخلوطی از آب و اتانول سنتز شده، نتیجه حاصلی به خوبی نشان داد که اندوزه و شکل ذرات و همچنین نواصع لامیناسینی این مواد به شدت تحت تأثیر حلال استفاده شده قرار دارند. تا این مطالعه نشان داد که در نانوکریزهای که در حضور مخلوطی از Y$_2$O$_3$: Eu$^{3+}$ و اتانول سنتز و در دما 1000°C به یک مخلوط سنتز شده گویایی از انتشار نسبت به حالت مشابهی که نشان می‌دهد مورد استفاده قرار گرفت حاصل می‌گردد.

مراجع

and Dy3+-codoped Y\textsubscript{2}O\textsubscript{3} phosphor particles", Nanoscale Research Letters volume 7 issue 1, pp. 556-562, 2012.

