فصلنامهٔ علمی پژوهشی
دوره ۶، شماره ۳، زمستان ۱۳۹۶

سنتر نانو پودر کامپوزیتی SiC-TiC به روش سل زل و احیای کربنومال
محمد فضلی ۱، حسین سربولکی ۲

۱ کارشناسی ارشد، مهندسی مواد و مالزی، دانشگاه علم و صنعت ایران
۲ استاد، دانشگاه علم و صنعت ایران

* fazli1412@yahoo.com

اطلاعات مقاله:
دریافت: ۱۳۹۶ پذیرش: ۱۳۹۶

کلید واژه:
نانو کامپوزیتی، سل زل، SiC-TiC

چکیده:
در سال‌های اخیر، نانو کامپوزیتی به عنوان SiC-TiC یکی از اولین مواد کامپوزیتی بررسی شد و پژوهش‌های مختلفی در زمینه طراحی و تولید این مواد انجام گرفت. در این مقاله با استفاده از نانو سیلیکون و تیتانیوم کربنات، ساختار و اسید نیتریک سنتر نانو پودر کامپوزیتی SiC-TiC به روش سل زل و احیای کربنومال طراحی و تولید گردیده است. مطالعاتی که در این مقاله انجام گرفته اصلی بررسی و تحلیل‌های آزمایشی درباره خواص و کاربرد این مواد پیشنهادی می‌باشد.

۱ مقدمه
امروزه اهمیت و کاربرد کاربردهای دیرکند سریعاً در حال رشد است و این نه تنها از جنبه تجاری بلکه براساس کاربردهای دیرکد در مواد سرامیک و مواد پیشرفته، نوعی از کاربردهای جدید و ساختارهای بنیادی ایجاد می‌کند. این کاربردها از ویژگی‌های خاص مواد نانو ساخته شده‌اند که با بررسی و تحلیل خواص اخیر از پژوهش‌های نوین، به دلایل دیده شده که با چالش‌های کربنومال مواجه است.
دیگری که در ستون این ذرات بسیار حائز اهمیت است، و در مراحل مختلف ستون بر تشکیل ذرات و خواص نهایی آن‌ها نقش تعیین‌کننده‌ای دارد. بنابراین، مطالعه سرویس و همکارانش [7] با استفاده از مواد پیش‌سازنده صلیب و سیلیکا و منبع کربنی سازارک، با تغییر دما و پساب و با دانه بندی (3) با پر درجه خلوت‌باد، از سری‌های کربنی‌بندی گرمایش‌دهی مختلف و شرایط دما و کارگزاران ذرات را ستون کرد. چگونه و همکارانش [9] در سال 2011 پدیده پیش‌سازنده صلیب را اینچه که در مورد تکنیک نوین در تولید ذرات کربن‌بندی سیلیزیوم مورد بررسی قرار گرفته است به‌بستر شامل روش‌های کربن‌بندی پودرهای بی‌ثابتی و منابع مختلف کربنی است و در مورد فرآیند ستون کربن‌بندی سیلیزیوم به روش سر و زن، محققین اندکی صورت گرفته است به عنوان مثال کرده و همکاران را با استفاده از پیش‌سازنده صلیب TiC [10] ذرات خض خورد و همکارانش (C₃H₆) سیلیزیوم که در این فرآیند از تغییر جریان C₃H₆ سیلمی به‌رونی سطح ذرات TiC تا رست کرده و ذرات TiC خالص بالایی به‌دست آمده. همچنین، وی و همکارانش [11] با استفاده از روش احیای کربون‌بندی پودرهای بی‌ثابتی و رزین، ذرات Ra TiC دما 1500°C و در زمان‌های مختلف سیستم کربنی در سال 2009 تایا و همکارانش [12] با استفاده از پیش‌سازنده و سیلیزیوم، ذرات TiC حدود 30 نانومتر تهیه کردند. در سال 2015 احیای کربون‌بندی سیلیزیوم در حضور منابع مختلف (مقدار الکتریکی در 20°C 1.5×10⁻⁶ cm²/A.s و حرارتی خوب (هیدرات) حرارتی در 20°C 21 W/m.K، برق بالا (400°C)، برق بالا (20، مقدار رابطه، دیگرگونه مناسب در مقایسه با سایر کاربیدها گیاهی سیلیزیوم و عضو از کاربیدهای صنعتی و مخصوصاً نظامی دانند [20]) روی‌ها آماده‌گشته و مستقیم چه در ستون کربن‌بندی به کار برده شده است. اما روی‌ها به روی‌ها شیمیایی به دلیل دست‌بایی به همگانی ترکیب شیمیایی در مقياس مولکولی که به‌هم‌آمیخته در ساخت بدن‌های سرامیکی پیش‌سازنده دارا یکی از اهداف مهم سرامیک‌ ایست. در روی‌های شیمیایی، سیالات از هویات دیفیقی برای نهایت پودرهای سرامیکی در ابزار زیست‌پزشک می‌باشد آگوستن شدن در نظر گرفت. در این میان، روی سر زن به عنوان یکی از روی‌های مهم شیمیایی مطرح است. در این روی، سیالات پودرهای سرامیکی را در ابزار 10 تا 100 نانومتر تولید کرد. در این روی، سیالات پودرهای سرامیکی مورد به‌کار گرفته را به‌طور مطرح است. در این روی، سیالات پودرهای سرامیکی را در ابزار 10 تا 100 نانومتر تولید کرد. در این روی، سیالات پودرهای سرامیکی مورد به‌کار گرفته را به‌طور مطرح است. در این روی، سیالات پودرهای سرامیکی را در ابزار 10 تا 100 نانومتر تولید کرد. در این روی، سیالات پودرهای سرامیکی مورد به‌کار گرفته را به‌طور مطرح است. در این روی، سیالات پودرهای سرامیکی را در ابزار 10 تا 100 نانومتر تولید کرد. در این روی، سیالات پودرهای سرامیکی مورد به‌کار گرفته را به‌طور مطرح است.
کریتی سپرک و آرامش است [12 و 14]. تاکنون مطالعات محدودی در مورد ساخت کامپوزیتهای SiC-TiC انجام شده ولی نگر بررسی قرار گرفته است. هدف از تولید کامپوزیت SiC-TiC کامپوزیتهایی با ترکیبی از خواصی گوناگون مقاومت به خوردگیهای اکسیداسیون خوب، مقاومت به شوک حرارتی و چگرگی شکست بالا حاصل از SiC سختی و مقاومت به سایش بالا حاصل از TiC بود. امروزه استفاده از روش‌های جدید به ویژه روش‌های در این زمینه اهمیت بسیاری داشته است. در فرآیند سنتز نانوذرات و نانو کامپوزیتهای به روش سل زل مورد استفاده قابلیت‌های شیمیایی قابلیت به خوبی استفاده نمود.

در تحقیق حاضر نانوذرات کامپوزیتی به روش SiC-TiC سل زل و احای کربنترمالی با خلوع زیاد و با استفاده از تری ایزوترمیک سیادی، تری انیل اتکس سیلان و ساکارسیستم شد.

امروزه اهمیت و کاربرد کامپوزیتهای دیگر یک سری در حال رشد است و این نشانه‌های جدیدی سنجش برای ساخت کربنرد کامپوزیتهای دیگر نشان داده است. در این مطالعه دانشگاه علوم و مهندسی نانوسیستمی به مات و سایش‌هایی این زمینه اهمیت بسیاری داشته است. این کاربرد در ایزوترمیک سیادی به

4500FMCT در سه اعداد مختلف (قطعات یکنواخت کم‌پلاستیک و پره‌های سرامیکی و...) دارای کاربردهای مختلف است [2]. مواد سرامیکی کاربردی مثل کاربرد تیتانیوم مواد پیشرفته با چاپ استخوان بسیاری هستند که دارای هدایت الکتریکی (مقاومت الکتریکی در ℃ 300) 21 محیط غلظتی، در ℃ 85 تا هال در W/m.K (31) نفت ذوب بالا (30°C) و سختی زیاد (25 - 28) مقاوم به سایش، درکاری می‌باشد در مقایسه با سایر کاربردهای جایگاه سپری و پیوسته در سیبیمکولی که اهمیت زیادی در ساخت بندنهای سرامیکی پیشرفته دارد یکی از اهداف مهم صنعت سرامیک است. در روش‌های شیمیایی، می‌توان شیوه‌های دیفیقی برای تهیه پودرهای سرامیکی از اعداد زیمیکرون‌ها به پایه آلومونیم شدن در نظر گرفته، در میان، روش سل زل به عنوان یکی از روش‌های معمول شیمیایی مطرح است. در این روش می‌توان پودرهای سرامیکی را در اعداد 100 تا 1000 نانومتر تولید کرد در این روش، مواد پودری بسیار خالص با استفاده از مواد پیش‌سازنده غیر آلی با آلی فلزی (الوکسیدهای) تولید می‌شوند [5]. نتیجه وابستگی این است که اگر این کامل در چین فرآیند به خوبی قابل کنترل باشد بر خواص محصول پیشرفت مؤثر خواهد بود.
مستند نانو پودر کامپوزیتی SiC-TiC به روش سل زل و احیای کربوترمال در هنگام هم سیلیکaten به همراه مهارتی عواص فلزی کنترل، در دمای 1500 درجه سانتیگراد، در مدت 150 ساعت، تا دمای 1000 درجه سانتیگراد، مقدار pH عامل است به عنوان مثال در دهه 90 میلادی بیننک و همکارانش [6] مجموعه‌ای از عواص مؤثر بر سنگرز دیغی که در سنتز این ذرات سپیار هزینه اهمیت است. مثلاً عامل

در این استنتاج پیدایش این ذرات سیاله، نیاز به عوامل مالس در روش سل زل و احیای کربوترمال، مانند مات سیلوین و منبع سیلیکان و روزن فنولیک به عنوان منبع کربنی، در دمای 1500 درجه سانتیگراد، مقدار pH عامل است به عنوان مثال در دهه 90 میلادی بیننک و همکارانش [6] مجموعه‌ای از عواص مؤثر بر سنگرز

در این استنتاج پیدایش این ذرات سیاله، نیاز به عوامل مالس در روش سل زل و احیای کربوترمال، مانند مات سیلوین و منبع سیلیکان و روزن فنولیک به عنوان منبع کربنی، در دمای 1500 درجه سانتیگراد، مقدار pH عامل است به عنوان مثال در دهه 90 میلادی بیننک و همکارانش [6] مجموعه‌ای از عواص مؤثر بر سنگرز
پیک گرماگیر مشاهده می‌شود که مربوط به تشکیل اکسید کارباییت تیتانیوم است. با افزایش دما تا 1300 درجه سانتی‌گراد، کاهش وزن نمونه می‌شود. در شکل 1 نشان داده شده است.

روند تحلیل حرارتی نمونه TS1 با نتایج بدست آمده توسط DTA-TG نشان می‌دهد که در دمای 1000 درجه سانتی‌گراد تشکیل اکسید کارباید تیتانیوم و با کارباییت تیتانیوم وجود دارد. در دمای 800 درجه سانتی‌گراد، تغییرات می‌تواند فاز TiOC به شکل می‌شود و به صورت همزمان وجود دارد. در دمای حدود 1000 درجه سانتی‌گراد تشکیل اکسید کارباید تیتانیوم شناسایی شده است.

روند تحلیل حرارتی نمونه TS2، TS1، 2 TS3 و فاز غالب این فاز در دمای 1300 درجه سانتی‌گراد. یک درصد هم‌اکنونی این فاز در فاز 1/3 و فاز سل زل، کارباید تیتانیوم و سنتز نانو پودر کامپوزیتی SiC به روش سل زل و احبای کربورمال حاوی تیتانیوم می‌باشد.

همانطور که مشاهده می‌شود، در نمونه‌های TS1 و TS2، فاز غالب این فاز در دمای 1000 درجه سانتی‌گراد. یک درصد هم‌اکنونی این فاز در فاز 1/3 و فاز سل زل، کارباید تیتانیوم و سنتز نانو پودر کامپوزیتی SiC به روش سل زل و احبای کربورمال حاوی تیتانیوم می‌باشد.

شکل 1- نمونه TS1، با نتایج بدست آمده توسط DTA-TG چرخه حرارتی.

حدود 16/22 میلی‌سیکل شد که با نتایج آنالیز حرارتی ارائه شده توسط پرس و همکارانش [18] مطابقت دارد.
دوفازی می‌شود. طبق انتظار، با تغییر نسبت فازهای نهایی تغییر کرده‌اند [۲۰-۲۲].

برابر ۴/۲۳۸۰/۲ آنگستروم و پارامتر شبکه TiC برابر ۴/۲۳۸۰/۲ آنگستروم است که باعث همبستگی بیشتر بین فاز‌های این دو می‌شود.

یکی از روش‌های بیشتر در طی سندرم کروبترمال در گسترده‌تر دماهای (۵۰۰-۱۵۰۰ درجه سانتی‌گراد) مکانیزم تشکیل کاری سیلیسیم از طریق سل زل شاخص واکنش بین سیلیکا و منبع کربن در دماهای نسبتاً بالای است. واکنش کلی احیای کروبترمال به صورت زیر است [۲۵]:

\[
\text{SiO}_2(s) + 3C(s) \rightarrow \text{SiC}(s) + 2\text{CO}(g)
\]

۱

و واکنش‌های زیر نیز در حین احیای کروبترمال گزارش شده‌اند [۲۴]:

\[
\text{SiO}_2(s) + C(s) \rightarrow \text{SiO}(g) + \text{CO}(g)
\]

۲

\[
\text{SiO}_2(s) + \text{CO}(g) \rightarrow \text{SiO}(g) + \text{CO}_2(g)
\]

۳

\[
\text{C}(s) + \text{CO}_2(g) \rightarrow 2\text{CO}(g)
\]

۴

\[
2\text{C}(s) + \text{SiO}(g) \rightarrow \text{SiC}(s) + \text{CO}(g)
\]

۵

\[
\text{CO}(g) + \text{SiO}(g) \rightarrow \text{SiC}(s)
\]

۶

سیلیکایی مذاب بر روی ذرات کاری‌بیدی؛ ممکن است عملکرد تنفسیش و اتصال ذرات به هم در دماهای ۱۵۰۰ درجه سانتی‌گراد وجود فاز مذابی سیلیکا می‌تواند مکانیزم اصلی به هم مرفوژولوژی نهایی محصول به نسیم از شکل ذره کربن، شیب کریوی می‌باشد.
مستقیم در سطح ذرات کربن، وقتی که ناقص تماسی می‌شود، شکل C/Si بین C/Co و SiO2 خودش را به ذرات کربن می‌رساند. با این حال، اگر ذرات SiO2 با مورفولوژی که کربن به تبعیت از ذرات کربن تولید می‌شود [۲۶].

واکنش ۲ در نواحی که با کربن در تماس است تحت آزادی آزاد
SiO2 و CO و SiO2 و CO می‌کند. واکنش ۲ با شکل SiO2 و CO یا شکل SiO2 و CO بیشتری می‌شود. اگر کربن نیز مجدداً مطلع از طریق واکنش
SiC تبدیل می‌شود. CO به واکنش ۴ با نسبت SEM

شکل ۳- تصاویر از ریزساختار نمونه‌ها با نسبت‌های Ti/Si = 0/25, 0/5, 0/75

CO (g) و SiO2 (g) از طریب و (g) تشکیل می‌شود. در این شرایط مورفولوژی محصول، ممکن به تشکیل وسکر است. این واکنش از ترمودینامیکی زمانی مطلوب است که فشار جزئی CO بیشتر از ۰/۲۷ مگایاسکال و دما نیز بیشتر از ۱۳۰۰ باشد [۲۷]. بنابراین می‌توان گفت، در این شرایط در مورفولوژی، تغییر در
Зیراکسیدهای
تیتانیوم طبق واکنش‌های زیر تشکیل شوند.

\[\text{nTiO}_2 + C \leftrightarrow \text{Ti}_n\text{O}_{2n-1} + \text{CO(n>4)} \] (7)

\[4\text{Ti}_n\text{O}_{2n-1} + (n-4) \text{C} \leftrightarrow n\text{Ti}_2\text{O}_7 + (n-4) \text{CO (n>4)} \] (8)

\[3\text{Ti}_n\text{O}_2 + \text{C} \leftrightarrow 4\text{Ti}_3\text{O}_5 + \text{CO} \] (9)

\[2\text{Ti}_n\text{O}_2 + \text{C} \leftrightarrow 3\text{Ti}_2\text{O}_3 + \text{CO} \] (10)

\[\text{Ti}_2\text{O}_3 + (1+4x)\text{C} \leftrightarrow 2\text{TiC}_x\text{O}_{1-x} + (1+2x)\text{CO} \] (11)

\[\text{Ti}_2\text{O}_3 + \text{C} \leftrightarrow 2\text{TiO} + \text{CO} \] (12)

\[\text{TiC}_x\text{O}_{1-x} + (2-2x)\text{C} \leftrightarrow \text{TiC} + (1-x)\text{CO} \] (13)

\[\text{TiO} + \text{C} \leftrightarrow \text{TiC} + \text{CO} \] (14)

به منظور سنتز فاز TiC با خلوص بالا، کربن موجود در
ساختار کامپوزیت به مقدار کافی وجود داشته باشد و هماهنگ
محیط احیاء عاری از اکسیژن باشد؛ در این صورت
زیراکسیدهای تیتانیوم احیاء و در نهایت فازهای
اکسی کربنای تیتانیوم تشکیل و در اثر واکنش این فازها با
کربن فاز TiC حاصل می‌شود.

۴- نتیجه‌گیری

در این تحقیق، نانو پودر کامپوزیتی با استفاده از
ROSH سل زل و احیای کربوترمال پودر زل خشک شده
های سیلیکا و تیتانیا، سنتز شده است. نتایج حاصل از آنالیز
حرارتی زل، نشان دهنده خروج و تجزیه گروه‌های آلی در
محدوده دمایی 900-400° و کربنیزه شدن سیالک در

silicon carbide and nanocrystalline silicon oxide nanoparticles by sol gel

NITRIDES", NOYES PUBLICATIONS, 1996.

[3] عیانزاده تورج، ابراهیمی محمد ابراهیم، ذره سیدی
سید مجید "کاربیدها"، انتشارات دانش پویان
جوان، 1385.

[4] P.A Liu, Q.S Yang, A.Z Shui, H. Wang,
X. Chen, L. Zeng, Y. Liu," Microwave
synthesis of nano-titanium carbide",
Advanced Materials Research, Vols 399-

Murataki, M. Tanigaki," Structure and
formation process of silica micro

