فصل‌نامه علمی پژوهشی

دوره ۶، شماره ۴، زمستان ۱۳۹۶

ستن و مشخصه‌یابی ذرات مغناطیسی فریت کلسیم پوشش داده شده با پلی اتانل گلاکیول برای گرمادمانی

عباس خردمند۱، امید وحیدی۲، سید مرتضی مسعودیه ۲

۱ دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران
۲ دانشکده مهندسی مواد و مالولوژی، دانشگاه علم و صنعت ایران

* ovahidi@just.ac.ir

اطلاعات مقاله:

دریافت: ۱۶ اردیبهشت ۱۳۹۷
پذیرش: ۱۲ خرداد ۱۳۹۷

کلید واژه: فریت کلسیم، پوشش پلاستیکی، گلاکیول، سولوتولان، هایپرترمی

مغناطیسی

چکیده:
در این پژوهش، سنترز ذرات مغناطیسی فریت کلسیم نک‌فاز که با پلی اتانل گلاکیول با استفاده از روش سولوتولان پوشش داده شده است تشریح شده است. بدین منظور، سهم پوشش پلی اتانل گلاکیول در مقادیر مختلف و یک نمونه بدون پوشش در محیط آبی‌ایل‌گلاکیول سنتز شده است. تشکیل فازی و توزیع کاتیون‌های نمونه‌های سنتز شده با استفاده از سدگاه پیشرفت وی‌کلاس و اندازه و شکل ذرات با استفاده از میکروسکوپ الکترونی روشی نش می‌باشد بررسی شده است. تاکنون آزمون پیشرفت آیکس نشان می‌دهد که شیاه‌کریستال‌های تمامی نمونه‌ها از نوع مکسی اسپین با ساختار معکوس خلیفی است و تراکم‌گیری شده توسط میکروسکوپ الکترونی روشی نش می‌باشد که با اعضای درصد پلی اتانل گلاکیول، اندازه ذرات کلاسیفی شده و نشان می‌دهند که فرآیند توسط آزمون‌های میکروسکوپی یک‌گزینی تولید نشده است. نتیجه‌گیری از روش‌هایی که نشان می‌دهد که به‌طور مناسب در برابر پوشش سنتز اثربخشی بروز دارد.

کلیات انتخابی:
کلاسیک بر روی نمونه‌ها پوشش داده شده توسط آزمایش ترمومگرافی شناسی شده است. خواص مغناطیسی نمونه‌ها استخوان نمونه‌های میکروسکوپی، تنظیح نمونه‌های مایع و میکروسکوپی نشان‌دهنده جهانی ۱/۱۶ emu/g و ۱/۱۶ emu/g ۱/۱۶ emu/g به‌طور گسترده در بیش از نمونه‌های و برای نمونه‌ها با حداکثر میزان پوشش دیده است. همچنین، وجود پلی اتانل گلاکیول بر روی ذرات پوست پیشرفت به‌طور کاملاً پخش خاصی مغناطیسی مواد مناسب با ماده پوست تغییر نماید که حتی کنترل نشان می‌دهد که میزان مغناطیسی متناسب قرار گرفته برای باند بروز در نتیجه نشان می‌دهد که این ذرات سنتز شده بدون پوشش و با جهانی ۱/۱۶ W/g و ۱/۱۶ W/g هستند.

۱- مقدمه

پژشکی تحقیقات گسترشده‌ای را به خود اختصاص داده است [۲، ۱۷] و در میان آنها ذرات فریت‌های مغناطیسی با ساختار اسپینل و با فرمول شیمیایی کلی (MFe۲O۴) (که استفاده از مواد مغناطیسی در کاربردهای مختلف مهندسی

۷۵
فولیک اسید [10]، پی‌های لاکتیک کو-گلاکتولیک (PLGA) [1] و غیره اشاره کرد.
[11] پی‌های اتان گلیکول (PEG) از جمله کاربردهای ذرات مغناطیسی استفاده از آنها در درمان سرطان به روش هایبیترمیای مغناطیسی است. به همین این روش می‌باشد که در ترکیبی دیگر روش‌های درمان سرطان جهت بیشتری درمانی انجام می‌شود [12]. در روش هایبیترمیای مغناطیسی، سیال حاوی ذرات مغناطیسی به بافت سرطانی مورد نظر تزریق می‌شود و بعد از قرار گرفتن بافت در مجاورت یک میدان مغناطیسی متناسب، درآمدهای تزریق به روش رفتار مغناطیسی ذرات مغناطیسی آسیب نیز ادبی آبوده نداشت. به این امر سبب گردید که این روش درمانی به انسانی کمک کند تا با داشت شرایطی و دارای زیست‌سازگاری به اندازه کافی باشد. بنابراین به عنوان مثال، آقای‌لی و همکاران [13] با استفاده از نانوذرات مغناطیسی فرتی‌های آهن، کالسیت و منگنز و آزمایش آنها بر میزان سرطان، توانستند بافت توموری موجود را با استفاده از گازهای متغیر از بین ببرند. در یک چنین دیگری که توسط سعی و همکاران انجام شد [14]، توسط نانوذرات مغناطیسی مگنتیت (Fe3O4) پوشش‌داده شده با گلسیراهیزین اسید و روش هایبیترمیای مغناطیسی، روند رشد سلول‌های سرطانی فیروبلاست 1929.9 موجد می‌باشد که می‌توان در میکروبیولوژی اپتیسی که نتیجه و سپس مراحلی آنها شد.

در پژوهش‌های دیگر، ذرات مغناطیسی فرتی‌های اسپین کلسیم با...

کالسیت، کلسیم، میزیم و غیره است. به علت دارا بودن خواص فیزیکی و شیمیایی متساندا و فرویدی فرود توجه ویژه قدرت این روش را داشته‌اند [16]. شکل فیبری سلول واحد فرتی‌های اسپینل بسیار مربوط به مکانیزم ترسیم رحمی از انی های اکسپرسن و شامل 23 موقعیت نشین هاشه‌لوچیه و 64 موقعیت نشین هرودوزی گیاهی و سه نظریه فیزیکی می‌باشد.

تا بحال پژوهش‌های گسترش‌دهنده در مورد فرتی‌های اسپینل حاوی فلات و سوته مانند آنها، کالسیت، کلسیم، روز مینگان و غيره همه با انواع پوشش‌ها در کاربردهای گراماینی صورت گرفته است. بایستد هر جستجوی محدودی در مورد فرتی‌های اسپینل شامل ذرات قلیایی خاکی ماده‌های کلسیم و منیزیم انجام شده است. آن‌ها از جمله که بسیاری از کاتیون‌های فلزی همانند کالسیت، کلسیم و منگنز در صورت ذرات های سری یا میومات می‌تواند در کاربردهای بیولوژیکی نقش می‌کند. به علاوه، یکی از راههای که می‌تواند از این روش و کاربردهای نیز کمک کند [17]، به علت داشتن به جلوگیری که توسط سعی و همکاران انجام شد [18]، توسط نانوذرات مغناطیسی مگنتیت (Fe3O4) پوشش‌داده شده با گلسیراهیزین اسید و روش هایبیترمیای مغناطیسی، روند رشد سلول‌های سرطانی فیروبلاست 1929.9 موجد می‌باشد که می‌توان در میکروبیولوژی اپتیسی که نتیجه و سپس مراحلی آنها شد.

در پژوهش‌های دیگر، ذرات مغناطیسی فرتی‌های اسپین کلسیم با...
اضافه می‌شود. با اضافه شدن اسنت سدیم به محلول، محلول به رنگ قهوه‌ای در می‌آید و بعد از گذشت حدود ۵ دقیقه، محلول بصورت کفانه شدن می‌شود. با ادامه همزمان محلول به ۲۰ دقیقه یک سل غلیظ بسته می‌شود. محتویات نظر به یک انوکلا ۱۰۰ میلی‌لیتری انتقال و انوکلا به مدت ۲۲ ساعت در دمای ۱۸۰ درجه سانتی‌گراد در داخل یک گردن قرار داده می‌شود، رسوب سیاه رنگ با استفاده از اهتزای توده‌سازی از محلول جدا می‌گردد و توسط اندازه‌گیری آب می‌کند. لازم است به ذکر است که میدان و کنترل تشخیص می‌تواند با استفاده از تابش X’pert برای پترو ایکس (XRD) به استفاده از تابش CuKa-کرکنگ (1.5418Å) تکنیک استفاده می‌شود. استفاده از تابش ۵/۴ میلی‌مول Ca(NO3)2·4H2O (معدل ۵۹۰ میلی‌گرم) و ۹/۴ میلی‌مول Fe(NO3)3·9H2O (معدل ۲۰۱۹ میلی‌گرم) به نظر حاصل ۳ میلی‌لیتر اتانول گلاکیول، اضافه می‌شود. این نتایج محلول به نظر جابیش تبدیل می‌شود. سپس مقدار MAUD افزایش دارد. با استفاده از نرم‌افزار MAUD، ساختار و اکسیدمی در نمونه بدون پوشش و عدم وجود عناصر دیگر توسط آزمون‌های پراکنده‌گری اتزری پترو ایکس (EDX) تشخیص می‌شود. در حضور پترو انوکلا، بر روی نمونه‌ها سنتز شده توسط اسپری شدن ترموگلاسیمای مورد بررسی قرار گرفته است. برای تعیین بنیاد این نمونه‌ها حاصل از ارائه ملکون‌های S2 و S4 (bleach ۷۸ و ۸۸ درصد وزنی) می‌شود. همچنین در دمای ۴۰ درجه سانتی‌گراد تا رسیدن به محلول شفاف ترکیب رنگ ادامه پیدا کرد. در این مرحله، بدون مصرف اکسیدمی، در نمونه‌های سنتز، مقدار ۴/۸۵ گرم سدیم‌سازی به محلول
سنتز و مشخصه‌یابی ذرات مغناطیسی فریت کلسیم پوشه شده با ...
جنا منعكس است که در آن کاتیون‌های کلسیم بین مکان‌های چهار وجهی و هشت وجهی توزیع شده‌اند. اشغال مکان‌های بین‌نشین توسط کاتیون‌ها به عوامل شاعری بیون، میدان بلوری، آریا، الکترونی و تطبیق بینی وابسته است. وجود کلسیم در مکان‌های بین‌نشین هشت وجهی به دلیل شاعری بزرگ آن است که این مکان را برای آن مرجع می‌سازد. در اثر اعمال پوشش ضربی وارون‌گی که بصورت کسری از کاتیون‌های آهن در مکان‌های بین‌نشین چهار وجهی تعریف می‌شود تغییر چندانی نمی‌کند.

تصاویر ریزساختاری ذرات سنتر شده به توسط میکروسکوپ الکترونی نشان می‌دهد که ذرات سنتر شده در شکل 2 نشان داده شده‌اند. همان‌طور که ملاحظه می‌شود ذرات سنتر شده بدون پوشش دارای شکل کروی، در حالی که ذرات حاوی پوشش به شکل یک سطح کروی هستند. با انتخاب تعادل ذرات توزیع اندکی دارد به امکان شکل 3 و با استفاده از آنها، اندکی توزیع ذرات محاسبه و بر روی شکل 3 نشان داده شده‌اند. نتایج نشان می‌دهد که انتقال ذرات سنتر شده به پوشش دهنده کاهش چندان که در دست و از مقدار متوسط 249/1 nm برای نمونه بدون پوشش به مقدار 246/3 nm و 269/1 nm به ترتیب برای نمونه‌های S2 و S3 رصد است. همچنین، نتایج نشان می‌دهد که افزودن میزان پلی اتیلن گلاکیول سبب کاهش سنتر اندکی می‌شود.

در جدول 1، اندکی بیشتر از توزیع کاتیونی

جدول 1 - اندکی بیشتر از توزیع کاتیونی

<table>
<thead>
<tr>
<th>توزیع کاتیونی</th>
<th>نمونه اندکی اول (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ca_{0.11}Fe_{0.89})9[Ca{0.09}Fe_{1.11}]_4O_4</td>
<td>35/7</td>
</tr>
<tr>
<td>(Ca_{0.10}Fe_{0.90})9[Ca{0.08}Fe_{1.10}]_4O_4</td>
<td>39/7</td>
</tr>
<tr>
<td>(Ca_{0.08}Fe_{0.92})9[Ca{0.07}Fe_{1.05}]_4O_4</td>
<td>39/7</td>
</tr>
<tr>
<td>(Ca_{0.07}Fe_{0.93})9[Ca{0.03}Fe_{1.07}]_4O_4</td>
<td>49/7</td>
</tr>
</tbody>
</table>

توزیع کاتیونی بسته بندی از بالایی رنوتل که در جدول 1 ارائه شده‌اند نشان می‌دهد که فریت کلسیم دارای ساختار
همانطور که در شکل مشخص است، تناها عناصر اکسپز (Ca) و کلسیم (Fe)، آهن (O) در ساختار ذرات سنتز شده وجود دارند و هیچگونه ناخالصی در این ذرات موجود نیست.

شکل ۳- تصاویر میکروسکوپ الکترونیکی روبشی نشان میدان از نمونه‌های سنتز شده.

(الف) نمونه S۴، (ب) نمونه S۳، (ج) نمونه S۲ و (د) نمونه S۱.
شکل ۳- توزیع اندازه ذرات برای نمونه‌های سنتز شده، (الف) نمونه S1، (ب) نمونه S2، (ج) نمونه S3 و (د) نمونه S4

شکل ۴- طیف پراکندگی انرژی پرتو ایکس (EDX) ذرات مغناطیسی فریت کلسیم بدون پوشش
پویش، به حدود 1394 emu/g برای نمونه فریت کلسیم با 88
درصد پوشش پلی اتان گلایکول تقلیل می‌یابد. همچنین,
افزاری بیشتر مقدار پلی اتان گلایکول، به همین‌طور
مقدار مغناطیسی اشباع می‌شود. این کاهش به دلیل افزایش
میزان ماده غیرمغناطیسی پلی اتان گلایکول در نمونه‌ها
می‌باشد [9] که حضور پلی اتان گلایکول در نمونه‌های
مجدد تا‌این می‌کند. علاوه بر این، هم‌اندازه‌گر درجه
پرس باعث ایجاد نشان داد. حضور پلی اتان گلایکول سبب
ایجاد ماده آتی فرآیندهای α-Fe\text{\textsubscript{2}}O\text{\textsubscript{3}} می‌شود که منجر به
کاهش بیشتر مغناطیسی اشباع نمونه‌های پویش‌دار می‌شود.

منحنی‌های آزمایش ترمومگرام‌بندی برای نمونه بدون
پویش (S1) و نمونه با پویش پلی اتان گلایکول (S3) و
در شکل 5 نشان داده شده‌اند. هم‌اندازه‌گری مانند به نمونه‌های
پویش دار تاثیر بر حضور پویش می‌باشد.

منحنی‌های هسترزیس نمونه‌های سنتر شده در شکل 6 و
مقدار مغناطیسی اشباع و پسماندی‌ها مغناطیسی (H\text{\textsubscript{c}}) در جدول
2 آراشده شده است. هم‌اندازه‌گری مشاهده می‌شود، مقدار مغناطیسی اشباع
نمونه‌ها با افزایش درصد پلی اتان گلایکول کاهش می‌یابد و
از مقدار حدود 51/2 برای نمونه فریت کلسیم بدون

![شکل 5 - نتایج آزمایش ترمومگرام‌بندی بر روی نمونه‌های بدون پویش (S1) و نمونه با 78٪ پویش پلی اتان گلایکول (S3)](image5)

![شکل 6 - نمودار مغناطیسی نمونه‌های سنتر شده بر اساس میزان پلی اتان گلایکول موجود در نمونه](image6)
جدول ۲ - مقادیر مغناطیسی اشعاع، پسماندزدایی مغناطیسی و میزان اتلاف مغناطیسی نمونه‌های سنتر شده

<table>
<thead>
<tr>
<th>W/g (Oe اتلاف مغناطیسی)</th>
<th>emu/g (پسماندزدایی مغناطیسی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۲</td>
<td>۵/۱۲</td>
</tr>
<tr>
<td>۰/۹۸</td>
<td>۳/۸۲</td>
</tr>
<tr>
<td>۰/۸۰</td>
<td>۵/۸۲</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۴/۳۲</td>
</tr>
</tbody>
</table>

نتایج های پرترمیای مغناطیسی با استفاده از انواع مختلف و میزان اتلاف Mغناطیسی متناوب با فرکانس ۳۰۰ kHz و شدت میدان Mغناطیسی ۲۰ kA/m بر سوپراپسیون ذرات سنتر شده فریت کلسیم پوشش‌دار و بدون پوشش در شکل ۲ نشان داده شده است.

شکل ۷ - تغییرات دمایی سوپراپسیون ذرات سنتر شده در فرآیند های پرترمیای مغناطیسی

قرار داده شده بر مبنای در میانگین مغناطیسی متناوب در شرایط

ازمایشی این تحقیق، توسط مکانیسم افت هیسترژسیس

می‌باشد که در راه مکانیسم چه دیگر ایجاد مغناطیسی

که عبارتند از تولید گرمای اثر گرداگرد و توسط

اساسی‌های تیل و پراوی، نمی‌توانند در شرایط عملیاتی

حاضر در از مایشات موثر باشند. تولید گرمای توسط ایجاد

گرداگردی در اندازه دارای تاثیری از سانتی‌متر و

همانطور که ملاحظه می‌شود، طبق نتایج بدست‌آمده از

ازمایش مغناطیسی سنج نمونه لززان، نمونه‌های با اشیاع

مغناطیسی بالاتر، نوک‌پی در میان به سوپراپسیون را به

مقداری بیشتر در شرایط بکس میان می‌توانند شروطی

داشته و به همین ترتیب میزان بالاتری از اتلاف مغناطیسی

را دارا می‌باشند. علت این مسئله را این گونه می‌توان بیان

کرد که مکانیسم موثر در تولید گرما توسط مواد مغناطیسی

دوزه ۶ شماره ۴ تاریخ ۱۳۹۶
برای نمونه بدون پوشش تا 4/9 emu/g کمتر از ۱۰۰۰ نانومتر صورت می‌پذیرد [۱۸] و با توجه به اینکه اندیشه بلوک ذرات مورد آزمایش در این تحقیق در محدوده ۵۰۰ تا ۵۰۰۰ نانومتر قرار گرفته‌اند، مکانیسم افت هیسترزیس عامل ایجاد حرارت می‌باشد. از انجایی که مقدر نانومتری می‌باشد، میزان ذرات خاکستری که مساحت حلقه هیسترزیس بالاتری را دارد، به ترتیب برای نمونه‌های بدون پوشش و با حداکتر پوشش در میدان مغناطیسی متناوب هم‌رها داشته‌دند.

مراجع

