فصل‌نامه علمی پژوهشی

دوره ۶، شماره ۳، زمستان ۱۳۹۶

سنتر و مشخصه‌یابی ذرات مغناطیسی فریت کلسیم بوش داده شده با
پل اتانول گلائیکول برای گرما‌دارمانی

عباس خردملا، امید وحیدی، سید مرتضی مسعودی‌نژاد

۱ دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران
۲ دانشکده مهندسی مهندسی مکانیک استخوانی، دانشگاه علم و صنعت ایران

* ovahidi@iust.ac.ir

اطلاعات مقاله:
دریافت: ۱۶ اردیبهشت ۱۳۹۷
پذیرش: ۱۳ خرداد ۱۳۹۷

کلید واژه:
فریت کلسیم، بوش داده اتانول گلائیکول، سولفورمان، هایپرتربیم

مغناطیسی

چکیده:
در این پژوهش، سنتر ذرات مغناطیسی فریت کلسیم تک فاز که با پل اتانول گلائیکول با استفاده از روش سولفورمان بوش داده شده است، تشریح شده است. بدین منظور، سه نمونه با بوش پل اتانول گلائیکول در مقادیر مختلف و یک نمونه بدون بوش در محیط اتانول گلائیکول سنتر شده است. ترکیب قارسی و کویتیت کانتیوی نمونه‌ها، سنتر شده با استفاده از دستگاه پرس بروت آیکس و اندازه‌گیری شکل ذرات با استفاده از میکروسکوپ الکترونی شرک می‌باشد. نتایج آزمون پرس بروت آیکس نشان می‌دهد که ساختار کریستالی تمایل نمونه‌ها از نوع مکسی اشیایی با ساختار مکسی‌کریستالی این است. تغییر فرکته شده توسط میکروسکوپ الکترونی شرک نشان می‌دهد که با افزایش فاصله پل اتانول گلائیکول، اندازه ذرات کاهش می‌یابد. نتایج آزمون طیف‌سنجی پرکاندکی آزمایش بروت آیکس حضور عناصر کلسیم، آهن و وکسترین در نمونه سنتر شده فریت کلسیم بدون بوش دیده نمی‌شود. حضور پل اتانول گلائیکول بر روی نمونه‌های بوش داده شده توسط آزمایش ترمودیتابی نشان داده شده است. خواص مغناطیسی نمونه‌ها با ساختار مغناطیسی سنگ نمونه‌ها در نتیجه بررسی و بررسی مغناطیسی مشاهده گردیده است. با استفاده از روش هایپرتربیمی مغناطیسی، توانایی تولید گرمای هوا توسط ذرات مغناطیسی سنتر شده که تحت یک میزان معنادیده مشابه قرار گرفته بودند، بررسی شده و نتایج نشان می‌دهند که ذرات سنتر شده بدون بوش داده با جذاکتر بوش دانه به ترتیب دارای میزان اثاث مغناطیسی

۱- مقدمه

پژشکی تحقیقات گسترشده‌ای را به خود اختصاص داده است
[۱، ۲] و در میان آنها ذرات فریت‌های مغناطیسی با ساختار
اسپینل و با فرمول شیمیایی کلی به صورت Fe₃O₄ (که
استفاده از مواد مغناطیسی در کاربردهای مختلف مهندسی

۷۵
فولیک اسید [10]، پلی اتیلن گلیکول (PEG) [12] و اسید میکروپولیمر Dextran (PLGA) [1] برای درمان و گسترش سلول‌های سرطانی استفاده می‌شود. در این تحقیق، تعداد سلول‌های میکروپولیمر (PEG) و پلی اتیلن گلیکول (PLGA) در دو گردش گذاری خودی به‌صورت جداگانه استفاده گردید. برای این منظور، سلول‌های میکروپولیمر و پلی اتیلن گلیکول به‌طور مستقیم بر روی سطح غشاء سلولی و سطح غشاء سلولی میکروپولیمر نصب شدند. در این مطالعه، تعداد سلول‌های میکروپولیمر و پلی اتیلن گلیکول به‌طور مستقیم بر روی سطح غشاء سلولی و سطح غشاء سلولی میکروپولیمر نصب شدند. در این مطالعه، تعداد سلول‌های میکروپولیمر و پلی اتیلن گلیکول به‌طور مستقیم بر روی سطح غشاء سلولی و سطح غشاء سلولی میکروپولیمر نصب شدند.
اضافه می شود. با اضافه شدن استات ریاسی به محلول، محلول به رنگ قهوه ای در می آید و بعد از گذرش حدود 5 دقیقه، محلول بصورت کف مانند تبدیل می شود. با ادامه همزمان محلول به مدت 30 دقیقه، یک سل غلیظ به دست می آید. محتوای نیاز به یک اتانول 100 میلی لیتری، انتقال و اتانول به مدت 22 ساعت در دمای 180 درجه سانتیگراد در داخل یک گرم کن قرار داده می شود. رسوی سیب زنگ با استفاده از آهنربای نتوانی می شود. محلول جدا می گردد و توسط اتانول و آب مکصر در چندین مرتبه شسته می شود. نهایتاً رسوب شسته در دمای 80 درجه سانتیگراد به مدت 6 ساعت در درون گرم کن خالی کشید می شود. ستون فلزی بدون پوشش (نمونه S1) نیز همانند ستون اتانول از یک مقدار که تهیه شده است به روش سولولترمال از شرکت Merck تهیه شده است. بعد از پوشش فوقانی، نمونه به محلول در حین چندین استات نرم شود. برای ارزیابی قایق نمونه های ستون شده، از دستگاه Philips X’pert برای پرتو ایکس (XRD) استفاده شده است. از نتایج بدست آمده از آزمون پرتو ایکس، اندکی توسط کریستال نیز از غرض یک (311) استفاده از مدل 2/7CA(NO_3)_2.4H_2O (ماده) و 2/7Fe(NO_3)_3.9H_2O (ماده) به نظر نمایی 30 میلی لیتر اتانول گلاکیول، اضافه می شود. این حالت رنگ محلول به تارنیجی تبدیل می شود. سپس مقدار 1/10/3/148 g و 1/916 g، 1/78 g و 1/68 g به محلول حاصل اضافه می شود و همزمان به دمای 40 درجه سانتی‌گراد تا رسیدن به محلول شفاف تارنیجی رنگ ادامه پیدا می کند. در این مرحله، بدون متوافق کردن فرآیند همزدن، مقدار 7/2 گرم سدیم استات به محلول می‌پردازد.
سنتر و مشخصه‌یابی ذرات مغناطیسی فریت کلسیم پوشاش داده شده با... ساختار میکروسکوپی ذرات از میکروسکوب الکترونی روشنی (TESCAN Vega II) (FE-SEM) نشر میدان (مشتوت) (serontه اش و از عکس‌های فرآیند، توزیع اندازه ذرات از طریق برآمگی Origion و Digimizer) به صورت تصادفی انتخاب شده‌اند. بدست آمده است. برای اندازه‌گیری خواص مغناطیسی مواد سنتر شده در دمای اتاق از مغناطیس‌سنگ نمونه مرتعش (VSM) (شرکت مغناطیسی دقیق کویر، ایران) استفاده شده است.

آزمایش های پتربیوم‌های مغناطیسی برای سوسپانسانیون ذرات سنتر شده در آب با غلظت ۱۰ میلی‌گرم بر میلی‌لیتر توسط یک تفاگر مغناطیسی منابع فکالاس بالا (HF-M-H-ST ۴۵) شرکت سرید صنعت داشی در فریکس ۳۰۰ کیلوهرت و در شدت میدان مغناطیسی ۱۰ کیلوامپرس برای انجام آزمایش های پتربیوم‌های مغناطیسی در شرایط ذکر شده، بعد از تهیه سوسپانسانیون با غلظت بینان شده، آن را داخل ظرف سکاری ریخته و در داخل کویل مغناطیسی قرار داده می‌شود. سپس آمیز و وتان دستگاه در مقادیر مشخص ۱-۳ نتایج و بحث

نمودار الگوهای پرتو ایکس برای نمونه‌های فریت کلسیم پوشاش و پوشاش در با پلی اتیلن گلایکول در شکل ۱ نشان داده شده است.

شکل ۱- الگوهای پرتو ایکس برای نمونه CaFe₂O₄ در درصد‌های مختلف پلی اتیلن گلایکول ۱۳۹۶ دوره ۶ شماره ۴
پیکرهای آنیسی‌گذاری شده بر شکل (۲۳۱، ۳۱۳، ۳۲۲، ۳۲۳، ۳۲۴، ۳۲۵) مربوط به ساختار اسپینل فریت کلسیم برای همه منویه‌ها هستند. همانطور که از اگوی پراش پروپاکس مولوی است، افزویده شدن پلی اتیلن گلاکیول سبب ایجاد ناخالصی هپرآ به فریت است. اسپینل کلسیم در منویه‌ها پوشش‌دار می‌شود. همچنین با افزایش مقدار پیکرهای اگوی پراش پیم‌های می‌شود.

یک نمونه از نمونه دهی کاهش پیش‌کرده است و از مقدار متوسط ۲۹۲/۱ nm برای نمونه بدون پوشش به مقدار ۲۴۵/۰ nm و ۲۴۵/۳ nm به ترتیب برابر نمونه‌های S۲ و S۴ و سپس از آن، نتایج نشان می‌دهد که افزویده نمونه‌های پلی اتیلن گلاکیول سبب کاهش اندام متوسط ذرات شده. به دلیل شایستگی کریستال فریت‌های اسپینل، برای تایید بیشتر تشکیل فریت کلسیم لازم عناصر موجود در ان آنتی‌ژن شوند. شکل ۴ گرافیک نشان دهنده پرتو ایکس نمونه فریت کلسیم بدون پوشش و را نشان می‌دهد.

جدول ۱- اندازه‌برداری شده بلوور و توزیع کاتیون‌های توزیع کاتیون‌ی‌ (nm) نمونه اندازه بلوور

<table>
<thead>
<tr>
<th>نمونه اندازه بلوور (nm)</th>
<th>توزیع کاتیون‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ca۰۰۸Fe۰۰۲)۰۴(Ca۰۰۹Fe۱۰۰)۰۴</td>
<td>۲۴۶/۰۵</td>
</tr>
<tr>
<td>(Ca۰۰۲Fe۰۰۰)۰۴(Ca۰۰۹Fe۱۰۰)۰۴</td>
<td>۲۹۹/۷</td>
</tr>
<tr>
<td>(Ca۰۱۰Fe۰۰۰)۰۴(Ca۰۰۹Fe۱۰۰)۰۴</td>
<td>۳۵/۷</td>
</tr>
<tr>
<td>(Ca۰۱۱Fe۰۰۸)۰۴(Ca۰۰۹Fe۱۰۰)۰۴</td>
<td>۳۹/۷</td>
</tr>
</tbody>
</table>

توصیع کاتیون‌های بسته و در حالت ریتول که در جدول ۱ ارائه شده‌است نشان می‌دهد که فریت کلسیم دی‌پلی ساختار

دوره ۶ شماره ۴ زمستان ۱۳۹۶

۷۹
ویژگی‌های شکل مشخص است، این عناصر اکسپیز (Fe) و کلسیم (Ca) در ساختار ذرات شدید نیست.

همانطور که در شکل مشخص است، این عناصر اکسپیز (Fe) و کلسیم (Ca) در ساختار ذرات شدید نیست.

شکل ۳- تصویر میکروسکوپ الکترونیکی روشی نشر میدان از نمونه‌های سنتز شده،

الف) نمونه S۱، (ب) نمونه S۲، (ج) نمونه S۳ و (د) نمونه S۴
شکل ۳- توزیع اندازه ذرات برای نمونه‌های سنتز شده، (الف) نمونه S، (ب) نمونه S2، (ج) نمونه S3 و (د) نمونه S4

شکل ۴- طیف پراکندگی انرژی پرتی ایکس (EDX) ذرات مغناطیسی فریت کلسیم بدون پوشش
پوشش، به حدود 88/82 emu/g برای نمونه‌های پختن کلسیم با 1396 درصد پوشش پلی اتیلن گلاکیلکول تقلیل می‌یابد. همچنین، اندازه‌بندی مقدار پلی اتیلن گلاکیلکول، سپید کاهش پیشتر مقدار مغناطیس اشباع می‌شود. این کاهش به دلیل افزایش میزان ماده غیرمغناطیسی پلی اتیلن گلاکیلکول در نمونه‌ها می‌باشد. در حضور پلی اتیلن گلاکیلکول در نمونه‌ها تا حدود سه برابر افزایش در حضور پلی اتیلن گلاکیلکول سبب ایجاد ماده آتی فرومغناطیسی α-Fe3O4 می‌شود که می‌تواند کاهش بیشتر مغناطیس اشباع نمونه‌های پخش دار می‌شود.

منحنی‌های آزمایش ترمودادرهای بر روی نمونه‌های بدون پخش (S1 و نیم‌های 88/78% پوشش پلی اتیلن گلاکیلکول (S3)) در شکل 5 نشان داده شده‌اند. همانطور که ملاحظه می‌شود، میزان افت وقیه بیشتر توسط حرارت دادن به نمونه‌های پوشش دار تایید بر حضور پوشش می‌باشد.

شکل 5 - نتایج آزمایش ترمودادرهای بر روی نمونه‌های بدون پخش (S1 و نیم‌های 88/78% پوشش پلی اتیلن گلاکیلکول (S3))

شکل 6 - نمودار مغناطیس نمونه‌های سنتز شده به اساس میزان پلی اتیلن گلاکیلکول موجود در نمونه

دروی 6 شماره 3 زمستان 1396
جدول ۲- مقادیر مغناطیس اشعاع، پس‌مانندگی مغناطیسی و میزان اتلاف مغناطیسی نمونه‌های سنتز‌شده

نمونه مغناطیس اشعاع (emu/g)	پس‌مانندگی مغناطیسی (W/g)	اتلاف مغناطیسی	نتایج های اپیرتمی‌سای مغناطیسی به‌وسیله اعمال میدان مغناطیسی متناوب به فرکانس ۳۰۰ kHz و شدت میدان مغناطیسی ۱۰ کیوان سیس‌سیم ذرات سنتز‌شده فریت کلسیم بوش‌دار و بدون پوشش در شکل ۷ تنش‌‌
۱/۱۲	۵۱/۱	S1	ذرات سنتز‌شده در فرآیند هایپرتمی‌سای مغناطیسی
۰/۹۸	۵۵/۴	S2	قرار داده شده در میدان مغناطیسی متناوب در شرایط تزریق می‌باشد. این حالت، توسط مکانیسم افت هیسترانژی می‌باشد که باعث می‌شود نمونه‌های دیگر ایجاد مغناطیسی که عبارتند از تولید گرما توسط جریان‌های گردبای و توسط آسان‌سازی گرمایی می‌باشد. تولید گرمایی نیز ایجاد نمایان که مکانیسم موثر در تولید گرمایی اتفاق می‌افتد.
۰/۷۰	۶۰/۸	S3	نتایج های اپیرتمی‌سای مغناطیسی به‌وسیله اعمال میدان مغناطیسی متناوب به فرکانس ۳۰۰ kHz و شدت میدان مغناطیسی ۱۰ کیوان سیس‌سیم ذرات سنتز‌شده فریت کلسیم بوش‌دار و بدون پوشش در شکل ۷ تنش‌‌
۰/۵۶	۵۶/۰	S4	

نتایج های اپیرتمی‌سای مغناطیسی به‌وسیله اعمال میدان مغناطیسی متناوب به فرکانس ۳۰۰ kHz و شدت میدان مغناطیسی ۱۰ کیوان سیس‌سیم ذرات سنتز‌شده فریت کلسیم بوش‌دار و بدون پوشش در شکل ۷ تنش‌‌

شکل ۷- تغییرات دمایی سوسیسیسون ذرات سنتز‌شده در فرآیند هایپرتمی‌سای مغناطیسی

همانطور که ملاحظه می‌شود، طبق نتایج بدست‌آمده از آزمایش‌های مشابه، نمونه‌های با اشیاع مغناطیسی بالاتر، نتایج بالاتر دارند. سوسیسیسون را به مقداری پیش‌تر در شرایط پکسی میدان متناوب مغناطیسی دارند و به‌همین‌تریب، میزان بالاتری از اتلاف مغناطیسی را دارا می‌باشند. علت این مسائل را این گونه می‌توان بیان کرد که مکانیسم موثر در تولید گرمایی اتفاق می‌افتد.
برای نمونه بدون پوشاک تا ۲۴/۹ εm/g گرم به حداکثر پوشاک بدست آمده با استفاده از مکاتپسیم هیسترسیس برای تولید گرم. سپس انجام‌شده تست شده در افزایش دما به حداکثر ۷۵°C و حداکثر ۴۰۰ و حداکثر ۵۴ W/g و حداکثر ۱/۱۲ W/g. از ترکیب برای نمونه‌ها بدن پوشاک و با حداکثر پوشاک در میدان مغناطیسی متناوب به همراه داشتند.

مراجع

نتیجه‌گیری

در این تحقیق، ذرات مغناطیسی فریت کلسیم بدون پوشاک و پوشاک‌دار با ماده مختلف پایه اتانول گلاکول به روش سولوئترمال در محیط اتانول گلاکول سنتز شد. برای تعریف پوشاک، ذرات سنتز شده توانستند نشان دهند که مقادیر سنتز به پوشاک‌دار توانسته در سطح ناشی از گرما افزایش می‌یابد. با انجام تحقیق و تجزیه ذرات سنتز شده، میزان اشباع نمونه‌ها از ۱/۳ εm/g