بررسی تأثیر زمان ایکاری الکترولس نیکل بر پوشش‌دهی پودر SiC\\n\\nکامپوزیت‌های می‌توانند به قابلیت‌های طراحی‌گذاری ضعیفی از این‌جNam مذاب می‌شود. این روش‌های مت�دک، به‌دنبال افزایش زمان ایکاری الکترولس نیکل بر پوشش‌دهی پودر SiC است. گروه آزمایشی برای این زمان‌ها انتخاب شدند. در اینجا، بررسی قرار گرفته است که این‌چنین افزایش زمان ایکاری الکترولس نیکل بر پوشش‌دهی پودر SiC به‌فروش‌دهی پودر SiC افزایش می‌دهد.\\n\\n1 Sharma\\n2 Zhang
آکاری الکترولس نیکل- پور با استفاده از اعمال احیاکننده بوروهیدرید سدیم مورد بررسی قرار گرفته است.

2- فعالیت‌های تجربی

در این تحقیق از پودر کربنید سیلیسیم با متوسط اندازه ذرات

![تصویر 1: آلیاژ پروسیس پرتو ایکس پودر SiC](https://example.com/image1)

![تصویر 2: تصاویر SEM پودر کربنید سیلیسیم](https://example.com/image2)

پودر کربنید سیلیسیم مصرفی 15 میکرومتر است. آکاری پودر کربنید سیلیسیم در حمام الکتروس نیکل- پور شامل 4 مرحله است که در ادامه شرح داده شده است.

نتیجه حاصل از آنالیز اندازه ذرات و میانگین اندازه ذرات پودر کربنید سیلیسیم مصرفی در شکل 3 آورده شده است. همان‌طور که مشاهده می‌شود متوسط اندازه ذرات

3 Particle Size Analyser
بررسی تأثیر زمان آکسیژن الکترولیس نیکل بر پوشش‌دهی پودر SiC

الف) تستشیوی ذرات کاریسید سیلسسیم به‌وسیله استون و آب مقطع
برای هر بار پوشش‌دهی، ۲/۳ گرم پودر کاریسید سیلسسیم به ۱۰ سی س استون آف‌زده شد و به مدت ۱۵ دقیقه در دستگاه اولتراسونیک قرار گرفت. آتولوگ‌های اختصاصی ذرات در استون حل شد. سپس استون حاوی ذرات اولتراسونیک شده در لوله‌های آزمایش ریخته شد و درون دستگاه گریز از مرکز قرار داده شدند تا ذرات از استون جدا گردد. مدت زمان ماندن لوله‌های آزمایش در دستگاه گریز از مرکز قرار داده شدند تا ذرات از استون جدا گردد. مدت زمان ماندن لوله‌های آزمایش در دستگاه گریز از مرکز قرار داده شدند تا ذرات از استون جدا گردد. مدت زمان ماندن لوله‌های آزمایش در دستگاه گریز از مرکز قرار داده شدند. بعد از این مدت، ذرات از لوله آزمایش تخلیه گرددند.

ب) مرحله حساس‌سازی
در این مرحله، محلول حساس‌سازی شده شامل ۱/۴ مولار کلرید قلع (SnCl₄) و ۰/۴ میلی‌لیتر عصاره اسید کاریسیدیک (HCl) (آماده شد. این محلول کامل با یون‌های گریز و شفاف است. ذرات کاریسید سیلسسیم در این محلول ریخته شد و به مدت ۱۵ دقیقه در دستگاه اولتراسونیک قرار داده شد و بعد از آن مدت مرحله قبل محلول درون لوله‌های آزمایش ریخته شد.

د) مرحله آبکاری
أبکاری الکترولیس پودرهای SiC در سه زمان ۱۵، ۳۰ و ۴۵ دقیقه در دمایهای ۲۵ و ۹۵ درجه سانتی‌گراد مورد بررسی قرار گرفت. اجرای اصل حمام آبکاری الکترولیس و مقادیر آنها در جدول ۱ آورده شده است. مقادیر نمک سولفات‌های نیکل، سیلدیم پوره‌دیده، کمیمکس کننده و بر اساس مطالعات انتخاب شد [۱۳، ۱۴].

شکل ۳- میانگین اندازه ذرات پودر SiC

<table>
<thead>
<tr>
<th>Volume (%)</th>
<th>Particle Size Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>

۵۶ دوره ۲ شماره ۱ بهار ۱۳۹۷
1-3 بررسی اثر زمان در پوشش‌دهی پودر SiC به روش الکتروولس در دمای 75 درجه سانتی‌گراد

شکل 3 نمودار پوست پروتو ایکس نمونه‌های آبکاری شده به مدت 30 دقیقه در دمای 75 درجه سانتی‌گراد را نشان می‌دهد. وجود پیک‌های کوچک نیکل در این نمودار تشکیل پوشش نیکل به سطح ذرات را تایید می‌کند. البته بايد توجه كرد كه به علت اينکي پوشش ايجادشده به صورت كامل روی ذرات اجادات شده است پيك‌های نیکل در نمودار با ارتفاع كم ظاهر شده، نتیجه حاصل از آنالیز XRD نيز كه در شكل 5 اورده شده است، وجود نیکل در EDS پوسته‌ها حاصل از آبکاری را تایيد می‌کند.

شکل 4 تصاویر میکروسکوپ الکترونی روبشی پودر SiC توسط نمودار SiC در مدت 75 دقیقه در دمای 75 درجه سانتی‌گراد را نشان می‌دهد. وجود پوشش نیکل روی سطح ذرات در این تصاویر قابل مشاهده است. اگرچه با افزایش زمان پوشش بیشتری روی سطح ذرات ایجاد شده است اما به طور کلي پوشش عنوان شدن یکنواخت به نظر نمي‌رسد که علت اين امر را مي‌توان پایين بودن دماي آبکاري نامين. زيرا بر اساس نظر قضاوت و سعيدی [1] در موارد سنتی روی واکنش هاي كه در حمام الکترولس نيكل - پودر انجام مي‌شود تا أوكرات امر. دمای حمام روی سرعت واکنش‌هاي 1 تا 3 مولر است. به همين علت دمای حمام ميزان نيكل و پودر واردشده به پوشش را نيز كنترل مي كند و سپس افزادن ميزان نيكل و پودر در پوشش مي‌شود. در واقع پاين بودن دما سبب کاهش احتمال پونه نيکل شده است و در تبیج فرآيند تشكيل لايه نيكل بر سطح ذرات SiC به خوبي انجام نميشود.

جدول 1- مقدار مواد اولیه ساخت حمام آبکاری SiC الکترولس پودر

<table>
<thead>
<tr>
<th>ماده</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiSO₄ · 6H₂O</td>
<td>15 گرم</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>مقداری</td>
</tr>
<tr>
<td>C₂H₅OH</td>
<td>10 مولار</td>
</tr>
</tbody>
</table>

پس از فرآيند آبکاری خشک كردن ذرات در دمای 100 درجه سانتی‌گراد و به مدت 3 ساعت سانتور گرفت، برای بررسی ريزساختار و مورفولوژي پوسته‌هاي SiC پوسته داده شده از میکروسکوپ الکترونی روبشی (SEM) توسط تیسان (SEM) مورد استفاده قرار گرفت.

الگوهای پوسته با استفاده از برتو اکس CuKα، فیلتر نیکل و ولتاژ 15-20 کیلو ولت و مجهز به آنالیزگر استفاده شد. به منظور تعیین ترتيب و فازهای موجود در پوسته‌هاي SiC پوسته داده شده سنتگا پروتو ایکس (XRD) توسط شرکت فیلیپس مورد استفاده قرار گرفت.

3- نتایج و بحث

به منظور بررسی شگردگي تأثير زمان بر پوسته نیکل ايجادشده روی سطح ذرات SiC در فرآيند آبکاري تغيير وزن پودر SiC در دو حالت قبل و بعد از آبکاري محاسبه شد. در آداي مقدار اين تغيير وزن به همراه تصاویر میکروسکوپ الکترونی روبشی و نمودارهای پوسته پروتو ایکس برای زمان‌های 10، 15، 20 و 25 دقیقه در دمای‌هاي 75 و 85 درجه سانتی‌گراد اورده شده است.

1 Philips
بررسی تأثیر زمان ایکس الکترولس نیکل بر پودردهه SiC

شکل 4- نمودار پردازش پرتو ایکس نمونه‌های آیکاری شده به مدت ۳۰ دقیقه در دما ۷۵ درجه سانتی‌گراد.

شکل 5- آنالیز EDS پودرهای SiC آیکاری شده در دما ۷۵ درجه سانتی‌گراد و زمان ال ف) ۱۵، ب) ۳۰ و ج) ۴۵ دقیقه.
شکل ۶- تصاویر میکروسکوپ الکترونی پودرهای SiC آبکاری شده در دمای ۷۵ درجه سانتی‌گراد و زمان الالف (الف) ۱۵، ب) ۳۰ و (ج) ۴۵ دقیقه.

\[
\begin{align*}
\text{BH}_4^- + 4 \text{OH}^- &= \text{BO}_2^- + 2 \text{H}_2 \text{O} + 2\text{H}_2 (g) + 4e^- \\
\text{BH}_4^- &= \text{B} + 2 \text{H}_2 (g) + e^- \\
\text{Ni}^{2+} + 2e^- &= \text{Ni} \\
2\text{H}_2\text{O} + 2e^- &= 2 \text{OH}^- + \text{H}_2 (g)
\end{align*}
\]
پرسی تأثیر زمان آبکاری الکترولیس نیکل بر پوششده‌پو در SiC

شکل 7-الف) افزایش وزن و ب) درصد افزایش وزن پودرهای SiC قبل و بعد از آبکاری در دمای 75 درجه سانتی‌گراد و زمان‌های 1، 5، 10، 15 و 45 دقیقه.

3-2- بررسی اثر زمان در پوشش‌دهی بیودر SiC به روش الکترولیس در دمای 85 درجه سانتی‌گراد

شکل 8 نمودار پرای ایکس نمونه‌های آبکاری شده به مدت 30 دقیقه در دمای 85 درجه سانتی‌گراد را نشان می‌دهد. در این نمودار برخی نمونه‌های موبوط به نمونه آبکاری شده در دمای 75 درجه سانتی‌گراد (شکل 4)

شکل 8- نمودار پراش پرای ایکس نمونه‌های آبکاری شده به مدت 30 دقیقه در دمای 85 درجه سانتی‌گراد.
شکل ۹ - آنالیز پودرهای EDS آبکاری شده در دما ۸۵ درجه سانتی‌گراد و زمان الف) ۱۵، ب) ۳۰ و ج) ۴۵ دقیقه.

کرده و خوشها را تشکیل می‌دهند و کلوهای ریز هم‌گون در فاصله بین خوشها تشکیل می‌شوند. کلوهای های تجزیه‌بندی یافته در هسته‌ای با تری층ی زائدهای SiC در این تصاویر قابل مشاهده است. همانطور که در این تصویر مشاهده می‌شود با افزایش زمان آبکاری پودرهای ناپاکی، روز سطح ذرات افزایش یافت است. به طوری که در دمایه ۱۰ دقیقه شده در زمان ۴ دقیقه (شکل ۱۰–ب) سطح ذرات به SiC شده در زمان ۴ دقیقه (شکل ۱۰–ج) ضمن ضخیم‌تر شدن پودرهای کلوهای های تجزیه‌بندی یافته در هسته‌ای با تری‌لایه‌ای تشکیل شود. با انجام فرآیند رسوب‌گذاری در زمان‌های بیش از ۱۵ دقیقه به مدت سطح ذرات نازک باشد می‌تواند تشکیل شود. بر اساس نتایج مطالعه تشکیل شده در مراحل اویل رسوب‌گذاری تشکیل شود. بر اساس تحقیقات این دانشمندان پس از گذشته ۳۰ دقیقه از زمان رسوب‌گذاری
پرسی تأثیر زمان ایکاری الکتروسی نیکل بر پوشه‌های پودر SiC

ساختار کلورهای نامنظم روی سطح می‌شود. با افزایش زمان SiC سطح ذرات Ni بیک لایه بیوسه و نازک از جنس پوشه می‌شود. زمانی که فرآیند ادامه پیدا می‌کند کلورهای نیکل تازه رسوب کرده به عنوان کاتالیست برای ادامه فرآیند ترسبی نیکل عمل می‌کند. بر اساس این مکانیزم، پس از تشکیل لایه اولیه در برخی مناطق کلورهای مجدداً تجمع کرده و باعث ضخیم شدن پوشه‌های می‌شود که این امر یکنواختی پوشه را از بین می‌برد.

یک لایه بیوسه و همگن به طور کامل سطح ذرات SiC می‌پوشاند. آن‌ها همچنین بیان کردن تعدادی کلورهای همچنین روی لایه‌ای ایجاد شده رسوب می‌کند و برخی از آن‌ها نیز باهم تجمع می‌شوند. بر این اساس مکانیزم پیشنهادی برای تشکیل پوشه الکتروسی نیکل روی ذرات SiC به شکل زیر است: رسوب گذاری از نقاط کاتالیتیکی آغاز شده و پس از آن واکنش‌های الکتروشیمایی در همسایگی کلورهای همک و با حد فاصل آن‌ها اتفاق می‌افتد و موجب تشکیل یک

شکل 10- تصویر میکروسکوپ الکترونی روبشی پوشرهای SiC آبکاری شده در دمای 85 درجه سانتی گراد و زمان آف (الف) 15، ب) 30 و ج) 45 دقیقه.

نامو پودر پوشه ایجاد شده روی سطح ذرات SiC به خوبی در شکل 11 نشان داده شده است. در این تصویر که از پوشرهای آبکاری شده در دمای 85 درجه سانتی گراد و زمان
شکل 11- تصاویر میکروسکوب الکترونی روبشی پودرهای SiC آبکاری شده در دمای 85 درجه سانتی گراد و زمان 30 دقیقه.

و با ایجاد لایه نیکل روی سطح ذرات وزن نمونه‌ها افزایش می‌یابد و با افزایش زمان آبکاری اختلاف وزن اولیه و ثانویه بیشتر هم می‌شود که این امر از ضخیم‌تر شدن لایه تشکیل شده روی سطح ذرات حکایت دارد.

در شکل 13-الف و 13-ب به ترتیب نمودار تغییر وزن پودرهای SiC قبل و بعد از آبکاری در دمای های مختلف در دمای 85 درجه سانتی گراد به صورت مقدار و درصد نشان داده شده است. بر اساس این نمودارها پس از فرآیند آبکاری می‌دهد. در این نمودار پیک‌های مربوط به نیکل با ارتفاع‌های بیدار شده‌اند که نشان‌دهنده وجود مقدار زیاد نیکل در نمونه است. در نتایج حاصل از آنالیز EDS نیز که در شکل 14 آورده شده است، پیک‌های نیکل با شدت مناسب در پودرهای حاصل از آبکاری دیده می‌شود.

شکل 13-الف (الف) افزایش وزن و ب) درصد افزایش وزن پودرهای SiC قبل و بعد از آبکاری در دمای 85 درجه سانتی گراد و زمان‌های 15 و 30 دقیقه.

3- بررسی اثر زمان در بوشونه‌دهی پودرهای SiC به روش الکتروس ری در دمای 95 درجه سانتی گراد.

شکل 13 نمودار پرداز پرتو ایکس نمونه‌های آبکاری شده به مدت 30 دقیقه در دمای 95 درجه سانتی گراد را نشان می‌ده.
بررسی تأثیر زمان آبکاری الکترولس نیکل بر پوششده‌ی پودر SiC

شکل 13- نمودار پردازش پرتو ایکس نمونه‌های آبکاری شده به مدت 30 دقیقه در دمای 95 درجه سانتی‌گراد.

شکل 14- آنالیز EDS پودردهای آبکاری شده در دمای 95 درجه سانتی‌گراد و زمان (الف) 15، (ب) 30 و (ج) 45 دقیقه.

پوشش نیکل روی سطح ذرات SiC در این تصاویر به خوبی دیده می‌شود. همان‌طور که در این تصاویر مشاهده می‌شود آبکاری شده در دمای 95 درجه سانتی‌گراد را نشان می‌دهد.
در این دما نیز با افزایش زمان آبکاری پوشش ایجاد شده روی سطح ذرات افزایش یافته است. ابتدا در این شکل می‌توان برخی نقاط را که در آن‌ها ذرات نیکل به صورت خوشه تجمع کرده و روی سطح ذرات SiC قرار گرفته‌اند نیز مشاهده نمود. علت این امر این است که با افزایش دما، سرعت واکنش‌های 1 تا 4 افزایش می‌یابد و در نتیجه سرعت احیای نمک فلز و تولید نیکل بیشتر می‌شود.[۱۷] بنابراین بر اساس مکانیزم تبدیل‌های هی و همکارانش[۱۵] تعدادی از پیوندهای نیکل نیم‌توانند در محل مناسب رسوب کرده و هسته‌های مجزا از جنس نیکل تشكل می‌شود.

![تصویر میکروسکوپ الکترونی روشنی پودرهای آبکاری شده در دمای ۹۵ درجه سانتی‌گراد و زمان SiC آبکاری](image)

شکل ۱۵- تصاویر میکروسکوپ الکترونی روشنی پودرهای آبکاری شده در دمای ۹۵ درجه سانتی‌گراد و زمان SiC آبکاری (الف) ۱۵ ب) ۴۵ دقیقه.

و با ایجاد لایه‌ای نیکل روی سطح ذرات وزن نمونه‌ها افزایش می‌یابد و با افزایش زمان آبکاری اختلاف وزن اولیه و ناپایه نیکل هم می‌شود که این امر از ضخیم‌تر شدن لایه تشكل شده روی سطح ذرات حکایت دارد.

در شکل ۱۶-الف و ۱۶-ب به ترتیب نمودار تغییر وزن پودرهای SiC قبل و بعد از آبکاری در زمان‌های مختلف در دمای ۹۵ درجه سانتی‌گراد به صورت مقدار و درصد نشان داده شده است. بر اساس این نمودارها پس از فرآیند آبکاری
بررسی تأثیر زمان آبکاری الکترولس نیکل بر پوشش‌دهی پودر SiC

شکل ۱۶ - ال‌ف) افزایش وزن و ب) درصد افزایش وزن پودرهای SiC قبل و بعد از آبکاری در دمای ۹۵ درجه سانتی‌گراد و زمان‌های ۱۵ و ۳۰ دقیقه.

۳-۴ بررسی اثر زمان در پوشش‌دهی پودر SiC به روش الکترولس

تغییرات وزنی پودر SiC و درصد این تغییرات پس از پوشش‌دهی الکترولس نیکل در زمان‌ها و دمای‌های مختلف آبکاری در شکل ۱۷ نشان داده شده است. همانطور که مشاهده می‌شود در همه دمای با آبکاری زمان آبکاری از ۱۵ به ۳۰ و ۶۵ دقیقه، میزان پوشش نیکل آبکاری یافته است.

شکل ۱۷ - ال‌ف) تغییرات وزنی و ب) درصد تغییرات وزنی پودر SiC پس از پوشش‌دهی الکترولس نیکل در زمان‌ها و دمای‌های مختلف آبکاری.

همچنین با آبکاری دمای حمام آبکاری الکترولس از ۷۵ به ۸۵ و ۹۵ درجه سانتی‌گراد بر میزان پوشش‌دهی آفروده شده است.
شکل 18- آنالیز فازی پودرهای SiC آیکاری شده در زمان ۳۰ دقیقه و دمای الف)۷۵ درجه سانتی‌گراد، ب)۸۵ درجه سانتی‌گراد و ج)۹۵ درجه سانتی‌گراد.

4- نتایج گیری

در فرآیند پوشش دهی الکترولیس، میزان زمان و دمای حمام آیکاری الکترولیس تأثیر بسیاری بر میزان پوشش و یکنواختی آن بر روی سطح ذرات SiC دارد. نتایج نشان می‌دهند این است که بیشترین میزان پوشش نیکل- بور بر سطح ذرات SiC در زمان ۴۵ دقیقه و دمای ۹۵ درجه سانتی‌گراد حاصل شده است. با این حال یکنواخت‌ترین پوشش در زمان ۳۰ دقیقه و دمای ۸۵ درجه سانتی‌گراد به دست آمده است. آنالیز فازی نمونه‌های پوشش داده شده نیز بیانگر است که در زمان ۳۰ دقیقه آیکاری در هر SiC فاز نیز بر سطح ذرات SiC حضور دارد و با آفزایش دما شدت پیک‌های Ni افزایش یافته است.

