تیمین دماه بهینه عملیات حرارتی جهت دستیابی به پوشش نانوساختار

هیدرولوکسی آپاتیت

رضوان اذری، علیپرضا خاندی، حمیدرضا رضایی

دانشگاه علم و صنعت، دانشکده مهندسی و متالورژی
khavandi@iust.ac.ir

چکیده:
پوشش هیدرولوکسی آپاتیت (HA) با اندازه ذرات نانوساختاری از طریق افزایش آلفا فسفات و همین‌طور استخوانپزی در اطراف کاشت‌های استخوانی، زمان تهیه آنها را در برابر میزان کاهش می‌دهد. در این پژوهش با استفاده از روش FTIR از روش سل - ژل اقدام به اضافه‌گیری HA بر سطح آلیاز Ti-6Al-4V کردند. با انجام آزمون‌های FTIR (MAF و XRD)، کربنیک و پایداری با تیمین کردن. تصاویر SEM و AFM نشان دادند که پوشش بعنوان درمان نانوساختار سل - ژل، عملیات حرارتی دستیابی به HA با خلوص بالا و کسب مدلی ترکیبی به مقدار استوکومتریک 1/3 کرده.

اطلاعات مقاله:
- دریافت: 8 مهر 1397
- پذیرش: 21 آبان 1397

کلمات کلیدی:
- پوشش هیدرولوکسی آپاتیت
- استخوانپزی
- سل - ژل
- عملیات حرارتی

۱- مقدمه

هیدرولوکسی آپاتیت (HA) با فرمول شیمیایی Ca₁₀(PO₄)₆(OH)₂ ماده‌ای کلسیم فسفاتی است که، ترکیب شیمیایی و ساختار بلوری آن به‌طوری شیائی‌ری به جز معدنی استخوان و دندان دارد. بر مبنای مطالعات گسترده‌ای بشنویدی که بالا بوده و داشتن خواص نیایر زیست‌عفایی و نیاز استخوانی HA ترکیب به بسیاری مسائل برای پزشک، استخوانی در دمای‌های انتهایی و نابینای است. به‌منظور برطرف کردن نیازمندی‌های بالینی
ثبت ارزیابی عملیات حرارتی جهت دستیابی به پوشش نانوکاتر هیدروکسی آپاتیت

دستورالعمل‌ها و استانداردهای تعرفه‌شده می‌باشد. برخی
الزام‌های تعبیه شده برای پوشش HA توسط FDA و ISO
در جدول ۱ ام‌دی‌س‌ت ب دیده می‌شود.

جدول ۱ - ال‌ازم‌‌‌ا تیپ و مقدار

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضخامت</td>
<td>غیرمشخص</td>
</tr>
<tr>
<td>Ca/P</td>
<td>1/10-0.76</td>
</tr>
<tr>
<td>خلوص فازی</td>
<td>حداقل ۹۵%</td>
</tr>
<tr>
<td>استحکام کششی</td>
<td>< ۵۰۸ MPa</td>
</tr>
<tr>
<td>استحکام برزی</td>
<td>< ۲۲ MPa</td>
</tr>
<tr>
<td>چگالی</td>
<td>< ۲/۹۸ g/cm³</td>
</tr>
<tr>
<td>فلزات سطحی</td>
<td>< ۵ ppm</td>
</tr>
</tbody>
</table>

سیکل عملیات حرارتی انتخابی برای پوشش، ابتدا
قدترین جهت بهینه‌سازی خواص مختلف پوشش محصول
می‌گردد. زیرا مستقیماً بر ریزساختر و ترکیب فازی پوشش
اثر می‌گذارد که این موارد به نوبه خود اثرگذاری مستقیم بر
عمرکرد پوشش تحت شرایط فیزیولوژیک خواهد داشت. [۴]

پوشش‌ها تحت شرایط فیزیولوژیک خواهد داشت. [۴]
گیو [۵]، نیکائیک [۶] و ویجایالکشمی [۷] و پوینرات [۸] از
جهل محققانی هستند که اثرگذاری مستقیم دمای
کلپسیوسنی را بر درصد پلاستیک، خلوص فازی، اندازه و
شاکه درت HA نشان داده‌اند.

فرایند تولید پوشش به‌عنوان چشم‌گیری بر خواص پوشش
از این‌گونه است. زیرا ریزساختر در خواص ماده اکسید خواهد

۱) Food and drug administration
۲) International standard organization
۳) Guo
۴) Tkalceev
۵) Vijayalakshmi
۶) Poinern

تعداد ۷ ماه‌های ۲ تا ماهان
۱۳۹۷

۴۴
به‌عنوان عامل پراکندگی به محلول اضافه‌شده در آدامه محصول به‌عنوان یک‌ساعت در همان دما هیژدش شد. سپس به‌عنوان ۲۴ ساعت در حل ایستا و در دمای محتوا پرزامی شد. مقادیری از سل جهت پوشش‌دهی کنار گذاشته و مابقی برای تهیه پودر HA از کاغذ صافی در دامنه، مقادیری از یوبور به سه قسمت تقسیم‌شده و در دمای ۴۰۰، ۴۵۰ و ۵۰۰ درجه کاریکی و تحت انرژی‌های حرارتی داده شد. آزمون‌های طیف‌سنجی مادون فرمز تبیین فوریه (FTIR, SHIMADZU, 8400S, Japan) XRD، عدد موج ¹ (400-600 cm⁻¹ و ۴۰۰ نانومتر ایکس (BOUREVESTNIK, DRON-8, Russia) هریک از نمونه‌ها پودری صورت گرفت. اشعه ایکس با طول موج ۱/۵۴۰ A آمپل (FWHM) توسط لامپ Cu-Kα در ۱۴/۶° تولید شد. اندازه‌گیری از طریق رابطه شر (۱) محاسبه گردید:

\[
Lc = \frac{k\lambda}{\beta \cos \theta}
\]

در این رابطه K ضریب وسکل می‌باشد و مقادیر آن ۹/۰ است. X طول موج برتو بر حسب نوترون است. \(\beta \) افت قاعده ماکر در حیطه انتقال پیک نیز (FWHM) بر حسب رادیان و 0 زاویه تقریب است.

STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) بمنظور بررسی رفتار حرارتی و پایداری دمايی پودر HA بر روی پودر به‌دست آمد از سل صورت گرفت. این آزمون در بیان دمای ۱۳۰۰-۵۵ درجه سالرنگ و در اتمسفر هوا انجام شد. با توجه به نتایج آزمون‌های XRD و FTIR, XRD, STA, BAHR, STA 504, (USA) B

عملیات حرارتی مناسب استفاده‌گردد. به‌منظور اطمینان از دست‌بایی به‌هدا مکرو، تصحیح SEM و آزمون XRF در مقایسه‌هایHA معمولاً حرارتی شده در سیکل انتخابی تهیه گردید. زیرلابرای وی‌وای V تهیه که پوشش TiO₂/Ti-6Al-4V به‌شکل سل - ژل کریستالور تهیه می‌شود.

۲- فعالیت‌های تجاری

جهت تهیه سل, کلسیم نیترات تراهاوردها با فرمول Ca(NO₃)₂:4H₂O به‌عنوان بیش‌مانده‌های کلسیمی و فسفات بر مصرف شرکت مرکز تهیه‌پذیر می‌باشد. سپس به‌کمک‌های تهیه‌کننده و فسفات در ۵۰ ml مول از هر یک از نمک‌های تهیه‌کننده و فسفات در دوباره تهیه شدند. مقدار مولی هریک از آن‌ها به‌طور جداگانه بجای ۱/۹ که نسبت Ca/P=۱/۷۵ محصول طی عملیات تیتراسیون با سرعت بسیار کم جهت پوشش به محلول فسفاتی در حال هم‌دارنده پودری همزمان مغناطیسی افزوده‌شد. در طول عملیات همزمان بروز در pH تایید تغذیه‌شده. شد ضیمان این که محلول تناسب اندازه‌بایای ۹ تغذیه‌شده محصول طی عملیات از نمونه‌بندی پیش‌بینی سری‌تر قرار گرفت. در مقایسه با آن‌ها نمونه زمان پرورشی سل که حضور عوامل اکسیدانت‌های نظری از نمونه‌های تهیه‌کننده تهیه شد که با توجه به فیزیک مواد آلی کمک‌های کرک در تیپ‌های می‌توان پوشش را در دمایه‌های بالاتر عملیات حرارتی نمود. در انتها فرآیند تیتراسیون ۰۶/۰ آمونیوم پلی‌کربورات

۱ Merck

۲ Scherrer equation

۳ Full Width at Half Maximum
نظر گرفتن سایر الگوهای مربوط به پوزش سیگنیک

عملیات حرارتی به‌همراه پوزش HA تبعین شد.

زیرآبای‌ها ورق‌هایی با ابعاد 100×100×1001 میلی‌متر از جنس آلیاژ

بودند که از قبل لایه‌ای از TiO₂ بر سطح آن شکل گرفته‌بود. زیرآبای‌ها با استفاده از

دستگاه پوزش‌دهی Xpert HighScore Plus Ver.3، I.R.Iran

که در سرتاره 2000 rpm (Nano Tajhiz Pasargad،

و زمان پوزش دهی 30 ثانیه با سل HA پوزش‌دهنده شدند.

مورفولوژی و ریزساختار سطح پوشش پس از عملیات

حرارتی در سیستم انتخابی پیشنهاد بوسیله تکرار

میکروسکوپی الکترونی برشی (SEM-EDS، TESCAN،

مورد بررسی قرار گرفت. توبوگرافی و

نبرد سطح پوشش به‌وسیله تکرار میکروسکوپی نوری

(AMF، Bruker Hysitron Tribo Scope، USA) عنوان

مورد بررسی قرار گرفت.

بخشی از پودر HA عملیات حرارتی شده در سیستم انتخابی،

تحت آزمون طیف‌سنجی فلوروسنس پرتو ایکس (XRF). قرار گرفت. انالیز عمیق‌تری از بی‌سی‌سورت (NetherlandsPhilips

کمی بررسی گردید و نسبت مولی Ca/P بطور دقیق

محاسبه‌گردید و با مقرار استوکومتریک 1/67 مقایسه گردید.

3- نتایج و بحث

الگوهای پودرهای سل HA که در دمای 200، 300، 400 و 500 درجه سانتی‌گراد فقط دو مدل از انواع عملیات حرارتی

شده‌اند. در شکل 1 مشاهده می‌گردد. در دمای 300 درجه سانتی‌گراد

پیک‌های شاسی‌ای شده کاملاً متغیر با فاز HA نیز و

پیک‌های مربوط به آمونیوم نیترات (NH₄NO₃) و کلسیم

دی‌فسفات (Ca₃P₂O₇) محصول جانی برهم‌کنش مواد اولیه سازنده سل می‌باشد.

که در دمای‌های بالاتر امکان تجزیه و خروج آن از پوشش

فرآیند موش. کلسیم دی‌فسفات که اثر وکنش‌های

پوشش‌های بالاتر قابلیت تبلور و تبدیل شدن به HA را پیدا می‌کند. بنابراین HA در این دما دارای خلوز کافی

نیست. واکنش آن در زیر آمده است:

I) 10 Ca(NO₃)₂ + 6 (NH₄)₂HPO₄ + 8 NH₄OH →

Ca₁₀(PO₄)₆(OH)₂ + 20 NH₄NO₃ + 6 H₂O

II) 2 Ca⁺² + 2 HPO₄⁻² → Ca₃P₂O₇ + H₂O

در دمای 400 و 500 درجه سانتی‌گراد HA

شناخته شده‌است. در این دمای پیک‌های شناسایی

منطقه فاز بر قرار گرفت. در این دمای پیک‌های شناسایی

حرف‌هایی مشخص در شناسایی HA محصول موش ودیده، با شدت بالایی شناسایی

شدند.

شناخته‌ی پیک‌های با چکارگیری اطلاعات کارت

استانداردهای شماره 1132-95 و استانداردهای در نرم‌افزار

Xpert HighScore Plus Ver.3

پژوهشگاه‌های در دمای‌های مختلف با چکارگیری اطلاعات

پیک‌های شناسایی شده فاز HA در رابطه شرید محاسبه

شده و در جدول ۳ ارائه گردیده‌است. با مقایسه اندازه

بزورک‌ها در دمای‌های مختلف مشاهده می‌گردد. روی کلی به

این صورت است که از افزایش در افزایش

فاز HA افزایش افزایش یافته‌ها در افزایش

می‌باشد. افزایش دما نسبت وکنش‌های نفوذی موجب

افزایش انتخاب بزورک‌ها می‌شود. با این حال انتخاب بزرگ‌‌ترها

در تمامی دمایا در مقایسه ناتوان قرار داده.
جدول ۲- مقادیر پارامتر FWHM و اندازه بلوک‌ها محاسبه شده برای پیگاه‌های شناسایی شده HA در دماهای ۲۰۰، ۴۰۰ و ۶۰۰ ^\circ C

<table>
<thead>
<tr>
<th>دمای (C)</th>
<th>Crystallite size (nm)</th>
<th>FWHM (deg)</th>
<th>Crystallite size (nm)</th>
<th>FWHM (deg)</th>
<th>Crystallite size (nm)</th>
<th>FWHM (deg)</th>
<th>2θ(deg)</th>
<th>(hkl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰۰ °C</td>
<td>۱۹.۲۳</td>
<td>۰.۴۷۲۳</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱۰.۸</td>
<td>(۰۱۰)</td>
</tr>
<tr>
<td>۴۰۰ °C</td>
<td>-</td>
<td>-</td>
<td>۴۸.۸۵</td>
<td>۰.۱۹۶۸</td>
<td>-</td>
<td>-</td>
<td>۱۸.۸</td>
<td>(۱۱۰)</td>
</tr>
<tr>
<td>۲۰۰ °C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۲۲.۸</td>
<td>(۱۱۱)</td>
</tr>
<tr>
<td></td>
<td>۴۹.۳۸</td>
<td>۰.۱۹۶۸</td>
<td>۳۱.۸۹</td>
<td>۰.۲۹۵۲</td>
<td>-</td>
<td>-</td>
<td>۲۵.۹</td>
<td>(۰۰۲)</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td>۰.۳۱۴۹</td>
<td>۱۱.۸۷</td>
<td>۰.۷۸۷۲</td>
<td>۲۷.۲۱</td>
<td>۰.۳۴۸۳</td>
<td>۳۲.۲</td>
<td>(۱۱۲)</td>
</tr>
<tr>
<td></td>
<td>۲۴.۰۴</td>
<td>۰.۳۹۳۶</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳۳</td>
<td>(۰۳۰)</td>
</tr>
<tr>
<td></td>
<td>۳۰.۲۰</td>
<td>۰.۳۱۴۹</td>
<td>۳۲.۴۹</td>
<td>۰.۲۹۵۲</td>
<td>-</td>
<td>-</td>
<td>۳۴</td>
<td>(۲۰۲)</td>
</tr>
<tr>
<td></td>
<td>۲۴.۵۲</td>
<td>۰.۳۹۳۶</td>
<td>۹.۷</td>
<td>۰.۹۸۴۰</td>
<td>۲۷.۴۸</td>
<td>۰.۳۴۸۳</td>
<td>۳۵.۵</td>
<td>(۰۳۱)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳۹.۸</td>
<td>(۳۱۰)</td>
</tr>
<tr>
<td></td>
<td>۲۰.۸۵</td>
<td>۰.۴۷۲۳</td>
<td>۱۲.۴۳</td>
<td>۰.۷۸۷۲</td>
<td>-</td>
<td>-</td>
<td>۴۶.۷</td>
<td>(۲۲۲)</td>
</tr>
<tr>
<td></td>
<td>۳۱.۸۲</td>
<td>۰.۳۱۴۹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۴۸.۲</td>
<td>(۳۱۲)</td>
</tr>
<tr>
<td></td>
<td>۲۵.۴۰</td>
<td>۰.۳۹۳۶</td>
<td>۲۵.۰۴</td>
<td>۰.۳۹۳۶</td>
<td>۲۱.۴۸</td>
<td>۰.۴۶۴۴</td>
<td>۴۹.۵</td>
<td>(۱۲۳)</td>
</tr>
<tr>
<td></td>
<td>۶۹.۷۸</td>
<td>۰.۱۵۷۴</td>
<td>۲۵.۸</td>
<td>۰.۳۹۳۶</td>
<td>-</td>
<td>-</td>
<td>۵۳.۳</td>
<td>(۰۰۴)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>۳۴.۰۹</td>
<td>۰.۲۹۵۲</td>
<td>-</td>
<td>-</td>
<td>۵۴.۴</td>
<td>(۱۰۴)</td>
</tr>
</tbody>
</table>
می‌شود. با افزایش دما شدت عبور و یوژنای آن‌ها می‌شود.

می‌شود. این تناهای به معادل حضور HA در محصول اولیه و افزایش درصد HA با افزایش دمای عملیات حرارتی می‌باشد. با شروع حرارت‌دهی از دمای 200 °C به بعد پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) به محدوده 3700-4000 گزارش شد. همچنین HA در ثانیه‌های دما شدت آن‌ها افزایش می‌یابد. یافته‌های آزمایشی با افزایش دما شدت آن‌ها افزایش می‌یابد.

این می‌تواند به تکمیل شدن واکنش سوی‌که‌های 4850-7500 cm\(^{-1}\) و پیک مشاهده شده در محدوده 1640 cm\(^{-1}\) مربوط به رطوبت جذب شده هستند. شدت این پیک‌ها با افزایش حرارت‌دهی افزایش و در ادامه با افزایش دما کاهش می‌یابد. افزایش اولیه را می‌توان به تکمیل شدن واکنش سوی‌که‌های 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در سیستم شده‌ای 4850-7500 cm\(^{-1}\) و پیک مشاهده شده در محدوده 1640 cm\(^{-1}\) مربوط به رطوبت جذب شده هستند. شدت این پیک‌ها با افزایش حرارت‌دهی افزایش و در ادامه با افزایش دما کاهش می‌یابد. افزایش اولیه را می‌توان به تکمیل شدن واکنش سوی‌که‌های 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در شده‌ای 4850-7500 cm\(^{-1}\) و پیک‌های متانظار با حالت کشتی متقارن پون 3\(^-\) در Sh
اختلافی که در توالی دمای واقع در مقایسه با نتایج FTIR و وجود دارد، به دلیل نرخ حرارتی متفاوتی است که نمونه در آلیت حرارتی در مقایسه با نمونه‌های عملیات حرارتی شده در کوره تجویز کرد است. نرخ افزایش دمای نسبتاً بالا (100°C/min) در آلیت حرارتی باعث وقوع استحاله‌های مربوط به دما‌های پایین تر شده است.

دمای عملیات حرارتی پوشش HA باید در حداقل مقدار خود انتخاب گردد تا کیفیت کافی برای لایه HA از نظر بلوریگی، یکپارچگی و چسبندگی به زیر‌آهن شود. با XRD، FTIR و RCA استحکام تا کیفیت از آزمون‌های HA با 340 گرادوس و در STA TiO2 عین جلوگیری از رشد بلورکها و لایه اکسیدی و جلوگیری از شکل‌گیری فازهای ناشوانی بروساکتی HA در حد اکثر در STA TiO2 (CaTiO3) عمليات حرارتی پوشش HA در دمایу 450 ⁰C به مدت 15 دقیقه در اتصال به صورت دیده تراز استحکام عملیات SEM تصاویر خنثی شده است که حالتی در سیکل انتخابی، در شکل 4 دیده می‌شود.

تصویر با کاشت وزن 5% مصابع TGA می‌باشد. احتمال افزایش اجزای آلی و نیتراتی به وجود یکی نسبتاً بالا در حوالی 300 ⁰C 40% مشخص است. این پیک مکلی افت وزن 5% در محصول نهایی می‌باشد. اما افزایش پوششها دمای دیگری نیست. هنگامی در حالت حرارتی بالای 1250 ⁰C می‌باشد. هم‌کارشان (17) که از روش مشابه جهت ستونی HA و را تا دمای 1650 ⁰C هزار را پوشش HA افزایش SA تا دمای 1650 ⁰C گزارش کرده.
زیر چسبنگی تکنیک و تماشای سلولی بیشتری را در مقایسه با سطح ماسح کاری شده از خود نشان می‌دهد. مطالعات درون‌تنی در افزایش میزان استخوان با کاشتی و جرم استخوان بیشتر را در اطراف کاشتی با سطح زیر در مقایسه با سطح صاف یا ماسح کاری شده نشان داده‌اند [1، 19].

1 In vivo

دوشنبه ۷ شماره ۲ تابستان ۱۳۹۷

۵۰
شکل ۵- تصویر AFM از ریزساختار سطح پوشش HA

زیری پوشش از فاکتورهای مهمی است که بر پاره زمان و استحکام تبیین کاشتی پوشش‌داده شده است. می‌تواند زیری میانگین (R)، به عنوان پارامتری جهت سنجش زیری سطح میانگین (R) به کار می‌رود. مقیاس HA به میزان ۱۶/۵۲ نانومتر محاسبه و در طی فرآیند تحقیقات متعادل تا حدی کرده‌اند. ویژگی‌های سطحی نانومتری برای مطالعه هستند. ۶۴/۱۲ زیرا اثر مهم بر پاسخ سطوح سیال‌های استخوانی دارند. پرهم کشته‌های نانویدی در تشخیص مولکول‌های زیستی، سازماندهی ماتریکس خارج سلولی، ساختار سلولی مراتبی بافت‌ها و غیره برای سیال‌ها اهمیت فراوانی دارد. در ترجمه مهندسی سطوح با ویژگی‌های نانویدی به افزایش قیف و هدایت استخوان‌سازی و پیکارگی با استخوان کم می‌کند. نتیجه‌ی پذیری سلسله XRF که تحت سیکل عملیات حرارتی انتخابی قرار گرفت در جدول ۳ آورده شده‌است. همان‌طور که ملاحظه می‌شود، کلیسیم و فسفر عناصر اصلی شناسایی شده هستند. ویژگی و منیزیم نیز به عنوان عناصر

۱ Haberko
عملیات حرارتی پوشش HA در دمای 450 درجه سانتی‌گراد بیش از 15 دقیقه در اتصاف هوای سیگل مناسب جهت دستیابی به پوششی با مشخصاتی نانویی و در نتیجه عملکرد زیستی بهتر می‌باشد.

مراجع

جدول 3- آنالیز XRF پودر سنتز شده HA

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>درصد وزنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>55/176</td>
</tr>
<tr>
<td>P2O5</td>
<td>45/150</td>
</tr>
<tr>
<td>SO3</td>
<td>23/22</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌گیری

نتایج آزمون‌های FTIR و XRD بر روی سنتز شده HA یافته‌هایی به عملیات حرارتی پودر در دمای بالای 450 درجه سانتی‌گراد در اتصاف هوای سیگل مناسب جهت دستیابی به پوششی با مشخصاتی نانویی و در نتیجه عملکرد زیستی بهتر می‌باشد. در نظر گرفتن سایر وقایع و احتمالات دیگر، عملیات حرارتی در دمای 450 درجه سانتی‌گراد بیش از 15 دقیقه در اتصاف هوای سیگل مناسب جهت دستیابی به پوششی با مشخصاتی نانویی و در نتیجه عملکرد زیستی بهتر می‌باشد.

نتایج آزمون‌های FTIR و XRD بر روی سنتز شده HA یافته‌هایی به عملیات حرارتی پودر در دمای بالای 450 درجه سانتی‌گراد در اتصاف هوای سیگل مناسب جهت دستیابی به پوششی با مشخصاتی نانویی و در نتیجه عملکرد زیستی بهتر می‌باشد.

