مطالعه فازی، ریزساختاری و مغناطیسی نانوکامپوزیت‌های
تیپه شده به روش‌های سل–ژل هیدرترمال و مخلوط سازی مکانیکی

مرتضی ادیبی، سید محمد میرکاظمی، سهیه اصلی‌هده

کارشناسی ارشد: دانشکده مهندسی مواد و مایعات، دانشگاه علم و صنعت ایران

دانشیار: دانشکده مهندسی مواد و مایعات، دانشگاه علم و صنعت ایران

استادیار: دانشکده مهندسی مواد و مایعات، دانشگاه علم و صنعت ایران

* mirkazemi@iust.ac.ir

اطلاعات مقاله:

دریافت: ۴ تیر ۱۳۹۷
پذیرش: ۱۸ آذر ۱۳۹۷

کلمه کلیدی:
سل–ژل هیدرترمال، فازیت کیت، تیپه شده، نانوکامپوزیت، مغناطیسی

1 مقدمه

طبق تعیین نانوکامپوزیت به موادی با بیش از یک فاز جامد

که حاصل در یک بعد از ابزار ابزاری باشد، گفته می‌شود نانوکامپوزیت‌هایی که اجزای مغناطیسی در

زمینه ماده محرک یا عمل کننده، جداسازی

مغناطیسی، دارو، رسانای، کاتالیست‌ها، حسگرهای

الکتروشیمایی، سیستم‌های تصفیه و حذف آلودگی آب و

جاذبه‌های امواج الکترومغناطیسی، مورد استفاده قرار

می‌گیرند[۵–۱].

فرزی کیت باعث افزایش خاواتر فزیت‌های اسپینل و از لحاظ

مغناطیسی دارای خواص فزی مغناطیسی است. این ماده

دارای ساختار اسپینل مکوس جزئی با فرمول شیمایی

CoFe2O4 است. از جمله خواص فزیت کیت می‌توان به

عایق بودن در برابر الکتریسیته، پایداری شیمایی عالی و

فصلنامه علمی پژوهشی

دورة ۲، شماره ۲، تابستان ۱۳۹۷

55
مطالعه فازی، ریسک‌نگاری و مغناطیسی نانوکامیورزهای $\text{CoFeO}_4/C\text{NT}$

کربن ارائه شدی در پی شیب محدودی در اغلب حالات

آلو و آبی دارد[16]-[11].

در پژوهشی که اولیه و همکاران[17] به بررسی سنتز
نامه‌اعضایی فریت کیالی/نانولوژ کربن (حاوی 89٪ ورنی
نانولوژ کربن) با استفاده از روش سولوتورمال برداخته شده
است. در این تحقیق ابتدا کلید کالیت و کلید آلی در
اتوان گیلکول حل می‌شوند بس از افزودن سیدم
DEA هیدروسیس به محلول، سوپرسنسیون نانولوژ کربن و
اضافه می شود. سوپرسنسیون به دست آمده تحت فرآیند
سولوتورمال قرار می‌گیرد. فرآیند سولوتورمال به مدت
10 ساعت و در دماهای 180، 200، 260 و 240 درجه
سانتی‌گراد انجام شده است. مغناطیسی اشاع بود
نانوکامیورژیت به دست آمده در دماهای 180 درجه سانتی‌گراد،
27 emu/g و برای نمونه سنتری در 270 درجه
سانتی‌گراد 67 emu/g است.

در پژوهش خاض نانوکامیورژیت فریت کیالی/نانولوژ کربن
حاوی 10٪ ورنی نانولوژ کربن با استفاده از دو روش مخلوط
سایر مکانیکی و سل-ژل هیدروتوم تهیه شدند. نانو ذرات
فریت کیالی مورد استفاده در روش مخلوط سایر مکانیکی
ابنیا با استفاده از سل-ژل هیدروتوم سنتری سیدم با
استفاده از امواج فرصت به نانولوژ کربن مخلوط شدند.

۲- فعالیت‌های تجربی

۲-۱ مواد مورد استفاده

مواد استفاده شده در این پژوهش شامل نیترات کالیم ۶ آبی،
NaOH، سدیم هیدروکسید (\text{NaOH}),$\text{Fe(NO}_3\text{)}_3.9\text{H}_2\text{O}$
$\text{Co(NO}_3\text{)}_3.6\text{H}_2\text{O}$، ۱۰۰۰ قرار
گرفته و درایی مغناطیسی اشاع ۹۰ است.[9]-[6].

یکی از مواد که در کنار نانولوژی مورد استفاده
قرار گرفته و منجر به بهبود خواص و استحکام کاربرد
این ذرات می‌شود، نانومود بر پایه کربن هستند. نانومود بر
پایه کربن شامل فوران، نانولوژ کربن، نانولوژ کربن،
نانومود و نانومودها هستند که به اختیار
خواص فیزیک و شیمیایی منحصر به فرد مانند هدایت
حرارتی و الکتریکی، استحکام مکانیکی بالا و خواص نوری
مورد توجه سیاری از محققین و کاربردهای صنعتی قرار
گرفتهاند[10]-[11].

نانولوژ های کربنی در واکنش سیرافیک هستن‌که به
صروت استوانه‌های توخالی یکپارچه به دور خود یچیده
شدند و به صورت لوله در آمدندان به دو شامل تک
و چند جداره وجود دارند. نانولوژ‌های کربنی دارای خواص
منحصر به فردی از جمله جریان الکتریکی عالی،
هدايت حرارتی عالی و خواص مکانیکی فوق العاده هستند.
در مواد با ابعاد نانومتری مانند نانولوژ کربن با افزایش سطح
ویژه انرژی جاذب پیچ در ذات و تماس به تشکیل کلره
افزایش می‌باید از طرفی به بچه به نسب طول به قطر و
انعطاف پذیری بالا در نانولوژ کربن، احتمال درهم
فرورفتن و فشرده شدن، زیاد است. توانایی برآمدگی
ضعیف نانولوژ کربن نیز از تماس آن‌ها به تشکیل
کلاقدایی از صدا نانولوژ کربن به توسط جاذبه
واندروالس به هم متعاب نیز می‌شوند. ناشی از
ظرفی به علت آبگیری و ماهیت خشک سطوح، نانولوژ

۵۶
دوره ۲ شماره ۷ تابستان ۱۳۹۷

1397
و آب دیونیزه شده، این جدول ۱ مشخصات مواد اولیه سبک (C₂H₃O₂·H₂O) ساخت شرکت میدر اسید اشباع این پژوهش آورد. شده است.

جدول ۱- مشخصات مواد اولیه

کد محلول	خلوص	وزن مولکولی	شرکت سانده	فرمول شیمیایی	نام
۱۰۲۸۳۴	۹۹/۰	۴۰/۹۵	Merck	Fe(NO₃)₃·9H₂O	نیترات اهن۹ آبه
۱۰۲۵۳۶	۹۹/۰	۲۹/۱۰۵	Merck	Co(NO₃)₂·9H₂O	نیترات کالکت۶ آبه
۱۰۲۴۲۱	۹۹/۵	۲۱/۱۴۶	Merck	C₂H₃O₂·H₂O	اسید سبیک۱ آبه
۱۰۴۸۲۶	۹۸/۰	۴۰/۱۳۷	Merck	NaOH	هیدروکسید نیترات
NC700	-	۱۴	NanoCyl	-	نانولوله کربن (۱۰۰ نانومتر)
-	-	۱۸	-	H₂O	آب مفطر و یون ذوب شده

شدو داده شده تا pH به مقدار خشک بر یاد است. سیس پودر بدست آمده در دمای ۱۱۰ درجه سانتی‌گراد و مدت ۳ ساعت خشک می‌شود.

۲-۴-۲- تهیه نانوکامپوزیت با استفاده از روش مخلوط سازی مکانیکی

برای تهیه نانوکامپوزیت با استفاده از روش مخلوط سازی مکانیکی، ابتدا پودر فریست کالکت آب در ۱۰ میلی‌لیتر آب تفت داده شد. سپس نانولوله کربن نیز در ۱۰ میلی‌لیتر آب مفطر و یون ذوب شده تا pH به مقدار خشک بر دست آمده می‌شود. سیس محلول هیدروکسید نیترات به مقدار ۴ میلی‌لیتر به محلول به مقدار ۱۱۰ درجه سانتی‌گراد و مدت ۳ ساعت خشک می‌شود.
مطالعه فازی، ریسک‌دانشی و مغناطیسی نانوکامپوزیت‌های CoFe2O4/CNT

از روش ال‌اس‌دی تست نیل مادر در دمای 8500 Shimadzu

بررسی کوارق گرفته است.

نانوکامپوزیت تهیه شده به مخلوط سازی آینه‌پزشک با کد M1 و نانوکامپوزیت تهیه شده به روش سل-زل هیدروتیمال با کد S1 مشخص شدند.

3- نتایج و بحث

در شکل 1 تیچه ال‌اس‌دی تست نیل مادر کریم مورد استفاده در آینه‌پزشک آورده شده است. در این شکل پیک 2340 cm⁻¹ مربوط به کریم دی اکسید موجود در هوا و پیک‌های 1606 cm⁻¹ و 1553 و 1153 cm⁻¹ به ترتیب مربوط به گروه کربنیل موجود در کربونیل، گروه کربنیل و پوپون فرماتی-۰، هستند.[۱۸]

در شکل ۲ الگوی پرداز یکپارچه نانوکامپوزیت‌های ستتر شده نشان داده شده است. تمامی پیک‌های مشاهده شده در هر دو نمونه مربوط به فرصت کیتالست با ساختار مکعبی است. در نمونه‌ها پیک مربوط به نانوکامپوزیت کریم نیز مشاهده نمی‌شود.

متوسط اندازه بلوک‌هایی به دست آمده از رابطه شریر در جدول ۲ است. است. همانطور که مشاهده می‌شود اندازه بلوک‌هایی ذرات فزیت‌کیتالست موجود در نانوکامپوزیت‌های تهیه شده به روش سل-زل هیدروتیمال از ۷/۵ برای اندازه بلوک‌هایی فزیت کیتالست موجود در نانوکامپوزیت تهیه شده به روش مخلوط سازی مکانیکی است.

آب تحت امواج فراصوت به مدت ۱ دقیقه با توان ۱۰۰ وات سونیکیت می‌شود. در انتهای دو سوپراتوپون با هم مخلوط شده و سپس برای ۱ دقیقه تحت امواج فراصوت با توان ۱۰۰ وات سونیکیت می‌شود. پودر یا هپلی در دمای ۱۱۰ درجه سانتی‌گراد و به مدت ۳ ساعت خشک می‌شود.

۵- مشخصه‌بایی

بررسی و مطالعه فازی نمونه‌ها با استفاده از روش پرداز Ultima IV مدل Rigaku (XRD) دستگاه CuKα مجهز به لامپ X منسجم شد. با استفاده از رابطه شریر و نتایج به دست آمده از آنالیز پراش پرداز ایکس متوسط اندازه بلوک‌ها محاسبه شدند.

\[
N = \frac{K \lambda}{\beta \cos \theta}
\]

که در این رابطه D متوسط اندازه بلوک و \(K, \beta \) به ترتیب زاویه پراش، ضریب پیک در نصف ارتفاع، ناپای و طول موج پرداز ایکس هستند.

جهت بررسی خواص مغناطیسی در این تحقیق از دستگاه مغناطیسی ساخت شرکت مغناطیسی VSM استفاده گردید. این دستگاه مدل ۶ مدل MDK ۱۵۰ در دو اتاق و تحت میدان ۱ تسلی انجام شده است. برای پرداز ایکس، موافقات فیزیکی و پروپان‌گی فازی ناوتیول و نانوکامپوزیت‌های ستتر شده از میکروسکوپ الکترونی Raman، تسکان سیمی ساخت شرکت و مدل Tescan با واقعه آمی در ۱۵ کیلوولت استفاده شده است. مغناطیسی مغناطیسی حاصله گریفه بر روی نانوکامپوزیت کریم با استفاده

دوره ۷ شماره ۲ تابستان ۱۳۹۷

۵۸
شکل 1- نتیجه آنالیز طیف سنجی تبدیل فوریه مادون قرمز نانولوله کربن

شکل 2- انگیزه پراش پروندهای نانوکامپوزیت‌های تهیه شده به روش‌های مخلوط سازی مکانيکی و روش سل- زل هیدروترمال

جدول ۲- متوسط اندازه بلورک‌ها

<table>
<thead>
<tr>
<th>نمونه</th>
<th>متوسط اندازه بلورک‌ها (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>۱۶/۳</td>
</tr>
<tr>
<td>M1</td>
<td>۴/۷</td>
</tr>
</tbody>
</table>

شکل ۳- تصاویر میکروسکوپ الکترونی روبشی گسیل میدان نانوکامپوزیت‌های تهیه شده به روش‌های مخلوط سازی مکانیکی و روش درجا را به صورت الکترون بارگشتی نشان می‌دهد. همان‌طور که می‌شود می‌شود در نمونه دارای

emic m. ۷ شماره ۲ تابستان ۱۳۹۷
پراکندگی مناسبی از هر دو فاز هستند. ذرات خرابی کیالت
دارای ابعاد نانومتری با ناحیه‌های ناپیوسته هستند که به
یکدیگر جسیبده و تکامل کلیسه داده‌اند. در برخی کلیسه‌ها

شکل 3- تصاویر میکروسکوپ الکترون روبشی گسیل میدان نانوکامپوزیت‌های تهیه شده
الف) روش مخلوط سازی مکانیکی ب) روش سل-زل هیدروترمال

تهیه شده به روش سل-زل هیدروترمال دارای متوسط اندازه
بی‌سهولک 3/5 برای و ۱/۳/9 emu/g ۱۸۰۹ مغناطیسی اشباع ییتی
نسبت به نانوکامپوزیت تهیه شده به روش مخلوط سازی
مکانیکی هستند این تفاوت می‌تواند به این علت باشد که
نتایج آزمون می‌تواند سنجی برای شبیه‌سازی مهندسی کار
دارای نانوکامپوزیت‌های تهیه شده با روش سل-زل
هیدروترمال ۴/۳۹ emu/g. این در نتایج نشان می‌دهد
مغناطیسی اشباع نانوکامپوزیت سنتز شده با روش
سلا-زل هیدروترمال در مقایسه با نانوکامپوزیت تهیه شده
به روش مخلوط سازی مکانیکی ۱۳/۳ emu/g ۱۳/۳ emu/ گ
پیشتر است.
نتایج آنالیزهای VSM و XRD نشان می‌دهد نانوکامپوزیت
اکسیدی از سطح نانولوله چا شده و در محیط آزاد شود. در این صورت اکسیژن های آزاد شده باعث اکسیدی تر شدن محیط واکنشی (پلاس رفتن pH) می‌شود. از طرف دیگر در تحقیقی که توسط جووانی و همکارانش (24) اجسام شده، نشان داده شده که افزایش pH در سری نانو ذرات فریت کیالت به روش هیدروتمال موجب رشد ذرات و افزایش مغناطیسی اشعاب و واداردنگی ذرات می‌شود.

شکل ۳- نمودار خواص مغناطیسی نانوکامپوزیت های تهیه شده با استفاده از روش های کامپوزیت سازی درجا و مخلوط سازی مکانیکی

نتیجه‌گیری
نанوکامپوزیت فریت کیالت/نانولوله کربن حاوی ۱۰٪ وزنی نانولوله کربن با استفاده از دو روش مخلوط سازی مکانیکی و سلسله‌های هیدروتمال تهیه شدند. نانو ذرات فریت کیالت سلسله‌های هیدروتمال سنتز شدند. نتایج تحقیقات میکروسکوپ الکترنی روبشی گسل میان نانو ذرات دهنه

