جذب اشباح معکوس دوفلوتوئی افرازی یافته در نانوکامپوزیت‌های ZnO/TiO۲ هسته/پوسته

مهسا حسنی۱، آزاد حجتی‌زاده۲. بابک مزنتیان۳

۱ گروه فیزیک، پردیس علوم و تحقیقات خوزستان، دانشگاه آزاد اسلامی، اهواز، ایران
۲ گروه فیزیک، امکان‌پذیری، دانشگاه علوم پزشکی، اهواز، ایران
۳ گروه مهندسی مواد، دانشگاه ملایر، ملایر، ایران

* ahaghighatzadeh@yahoo.com

اطلاعات مقاله:
دریافت: ۷ مهر ۱۳۹۷
پذیرش: ۱۲ آذر ۱۳۹۷

کلید واژه‌های نانوکامپوزیت‌های هسته/پوسته ویژگی‌های نویر غیر خیلی، جنگ دوفلوتوئی

مواد نوری غیر خیلی پیش‌برنده [۱۱]‌: پژوهش بر روی مواد با قابلیت‌های گستردگی در حوزه فناوری نوری مکنجبه توسعه ساختارهای نانو می‌باشد که ابداعی در جمعیت علوم و فناوری‌ها شامل چنین اکسیدها فلزی و مواد نیمه شریانی از جمله کروه‌هایی با مشخصه‌های رفتاری غیر خیلی نوری هستند که بسیار مورد

۱ مقدمه
در سال‌های اخیر توسعه مواد نوری غیر خیلی به دلیل ویژگی‌های منحصر به فردشان در کاربردهای وابسته به فناوری نوین سیبیل توجه محترم قرار گرفته است. نسل جدید ابزارهای الکترونیکی با کاربردهای گسترشده در ارتباطات مخابراتی، ذخیره‌سازی اطلاعات، کلید زنی نوری و پردازش سیگنال، درجه بالایی از پیشرفته را برای
جذب اشباع معکوس دوفوتونی افراشی یافت در نانوکامپوزیت‌های هسته/پوسته ZnO/TiO₂

همکاری‌ها در پژوهشگران فرزندگان در جزئیات [۲۴] از میان اکسیدهای فلزی، اکسید روی با ویژگی‌های غیر خطر نوری همچون تولید هارمونیک دوم و جنب چند فوتون، توجه تحقیقات و کاربرد بالای یا به عنوان نشانه‌گرانی ریزی در حوزه تصویر برداری نوری غیر خطر جلب کرده است[۲۶]، در هنین راستا، محققان گزارش‌های متفاوتی را در خصوص رفتارهای نوری غیر خطر نانوکامپوزیت‌های اکسید روی ارائه داده‌اند. در تحقیقی، غیر خطا افراشی یافت در حدود ۱۰۵ cm/W، به همراه ویژگی‌های محدوده‌گذاری تونر برای کریستال‌های rf تکنولوژی که نسبت به روش اسپارینگ، نیست. (آبقام آب‌های نانوذرات Au/ZnO، در پژوهشگری برای زیر لایه‌های کوارتز پوشش دهنده کرده و خواص نوری غیر خطا آنها را با بدست آوردن پذیرفته‌ای، که به همراه الکتروندیوکمایزیتی در کلاسیک ساختارهای پیش‌آمده مناسب جمعیت فیزیکی غیر خطا برای مواد در ساختارهای هسته/پوسته از Mathew و همکارانش طی پژوهشی که انجام داده‌اند هسته/پوسته CdSe/ZnS دانه‌های دوی‌پوششی روی سطح میکروامپسیون سنتز کرده و بهره‌گیری برای جذب غیر خطا و استراتژی‌های محعددکننده دوی ساختارهای هسته/پوسته در مقایسه با استراتژی کوانتوم دیت CdSe/ZnS مشاهده کرده‌اند[۱۹]. علاوه بر این، و
در این مرحله برای تهیه نانو ذرات سنتزی، مکانیسمی برای فرآیند رخداد آن پیشنهاد شده است.

2- فعالیت‌های تجربی

2-1- مواد

در این پژوهش از استاندارد تجربیاتی در دسترس آمده (98\% Zn(C2H3COO)2·2H2O، NaOH، HCl، H2O)، ZnO، TiO2، شیمیایی، کیفی (99\%) و اتانول (96\%) خریداری شده از شرکت مرکز جهت تهیه نانو ذرات کامپوزیت هسته/پوسته ZnO/TiO2 استفاده شد. همچنین از آب پرست یک کلر سوپرپل مربوط به شرکت ZNT سوپرپل که در دسترس دارماینده استفاده گردید.
نماش داده شده است. میدان ایپیکی قوی جهت ایجاد پدیده‌های خیلی توسط لیزر ND:YAG تیپ با طول موج عملکردی 1.32 نانومتر و توان 2/2 میلی وات ایجاد شد. تیپ‌های لیزری یافته زمانی 10 نانو ثانیه با نرخ تکرار 10 کیلو هرتز بودند. باریکه لیزر قبل از کانونی شدن توسط یک باریکه شکن به دو بخش تقسیم شد. بخشی از باریکه با عنوان باریکه مرجع به سمت آشکارساز فوتونی 1 برای اندازه‌گیری افت و خفه‌برداری لیزر هدایت شد. با به‌بینی مناسب بین‌بندی مقدار محور z (محور توری) در مجاورت کانون حرکت داده شد. جهت آماده‌سازی نمونه، مقدار مشخصی از نمونه‌ها در حال آب ریخته و به سل کوارتز تا ضخامت 1 میلی متر اضافه شد.

ساترژیفورز بی‌سروت 400 دور بی‌دیقه فراپسند رسوب گیری به مدت 10 دقیقه انجام شد. رسوب بسته آماده پس از شستشو با آب مفید و آنتون به مدت 12 ساعت در دمای 90°C خشک و به مدت 12 ساعت در کوره الکتریکی تحت عملیات حرارتی با دمای 550°C کلسیمین شد.

2-شناسایی و اندازه‌گیری

به‌منظور بررسی فازهای موجود در نانوذرات فیلتر، از الکوهای XRD ثبت شده با استفاده از پرتاب XRD‌های ایکس مدل DSCAVANCE با ولتاژ 450KV و جریان ساختمانی 0-30 mA که موج A (10/20) استفاده شد. به‌منظور بررسی سطح نانوذرات و اطلاعات ریخت شناسی از میکروسکوب الکترونی SIGMA VP-500 (مدل FE-SEM) رویشی نشر میدانی (STEM) بین‌میانی 30 کیلو‌گریم. در نظر گرفتن دستگاه BRUKER لیزر EDS (مدل EM10C-100KV) الکترونی عبوری به‌منظور ثبت شده از طیف سنجی پرتاب زنی برقی ZEISS برای بررسی BOMEN/MB102 نمودار (EDX) شناسایی عنصری نمونه استفاده شد. مطالعات نوری خلی براساس تحلیل طیف جنبی مرئی - گرانفلارد توسط AVASPEC-2048-TEC دستگاهی با چیدمان AVALAMP DH-S خلی توسط دستگاه روش-2 بررسی شدند.

3-چیدمان آزمایش‌گاهی

برای مشاهده پاسخ‌های غیر خیلی نانوذرات سنتز شده از رویش روش-2 با چیدمان دریچه پوش برای استفاده شد. آزمایش تجربی که کنترل نمونه‌ها شده جهت بررسی فاکتور‌های خطری و اندازه‌گیری گیری ضرایب جذب دو فوتونی در شکل 1

زئیت/تاکسیت 1397 تابستان 1397

687 شماره 2 تابستان 1397

1-آرایش تجربی چیدمان رویش-2 رویه باز.

نمونه‌های نوری آرامش شده با مشخصه‌های جذب غیر خاطری چگالی تابشی انتقال نافذ‌های غیر کنواختی را در مجاورت نقطه کانونی نشان می‌دهند. برای چنین نمونه‌هایی، هر انحرافی در شدت انتقال نافذ‌های ناشی از فراپسند جذب چند فوتونی است. در محدوده‌های تابشی
که پیدا کردن چند فوتونی منحصر به اثر جذب دو فوتونی است. منحنی تغییرات عدد گزار بر حسب فاصله روی نمونه (z)، روندی را به سمت حضور یک درد یک قله در نقطه کانونی عدسی می‌گزارد که نیم‌این درد می‌دهد. ظاهر یک درد یک قله در نقطه کانونی عدسی به اولین بیانگر آفراشیدن یک کاهش در فرآیند جذب دو فوتونی است. رفتارهای افزایشی و کاهشی مشاهده شده در اطراف فاصله کانونی که از دو فوتونی شدت پرتو لزیور ورودی رخ می‌دهد به ترتیب پیدا می‌شود.

\[\beta = \frac{q_0 (1 + \frac{(z)^2}{z_0^2})}{L_{eff}} \]

که در q_0 به گذار به‌هم‌بستگی شده (عمق دره با ارتفاع قله ظاهر شده در منحنی گذار بر حسب فاصله z) و به L_{eff} طول موتور نمونه به ضریب جذب خطي α مطابق معادلات زیر ارائه داده می‌شوند [8]:

\[T(z) = \frac{S_0}{2 \sqrt{2\pi}} \]

\[L_{eff} = \frac{1}{\alpha} \left(1 - \exp(-\alpha L)\right) \]

\[z_0 = \frac{\pi}{\alpha} \lambda \]

که در آن L ضخامت نمونه است، همچنین طول پرتو بر اساس \(k = 2n / \lambda \) بردار موج است. با در نظر گرفتن کمتر پرتو (z_0)، طول پرتو (\(\lambda \)) به ترتیب در حداکثر 1/4 cm، همچنین شدت پرتو در کانون (b) به ترتیب 4/214×10^{-6} \(\mu m \).
به منظور تشخیص دان ساختارهای هسته/پوسته برای نانوکامپوزیت‌های خاص شده، تصویر TEM گرفته شده از نانو ذرات ZnO/TiO₂ در شکل 5 (الف) نشان داده شده است. شکل 5 (الف) ترکیب مواد ساختارهای هسته/پوسته ZnO/TiO₂ را نشان می‌دهد. این اثرات به همراه رشد نانو ذرات در اطراف هسته‌های اکسید روی سیاه رنگ نشان می‌دهد. این اثرات از نظر ترتیب تصویر ImageJ بررسی و نتایج آنها به ترتیب در نمودار یک توزیع ذرات ارائه شده در شکل‌های 5 (ب) و (ج) نشان داده شده است. نتایج بدست آمده می‌گوید این اثرات در حدود 24 و 13 نانومتر را به ترتیب برای اندازه‌های ذره و ضخامت پوسته نشان می‌دهد.

3-2- بررسی های طیف‌سنجی مرنی-فرابنفش

در شکل 6 (الف)، طیف جذبی مرنی-فرابنفش نانو ذرات ZnO/TiO₂ خالص و نانوکامپوزیت‌های هسته/پوسته ZnO در گستره طول موجی 200 تا 800 نانومتر نشان داده شده است. طیف نانو ذرات خالص بین کندلی جذب قوی و ZnO است.
گسترده این ذرات در ناحیه فرانبش با شبیه تنادی در

ناموفقی به سمت ناحیه مرئی است. با این وجود، بررسی طیف

جذب نانو ساختارهای هسته/بوسته، قلمای را به عنوان قله

جذب مشخصه نشان نمی‌دهد.

g hv = A(hv - E_i)^2

در عکس ۴ که α ضریب جذب hv انتزای فوتون، A ثابت ناسب
و E_i انتزای ناحیه متنوعه است. مقادیر انتزای ناحیه متنوعه از
رسم نمودار (ahv)\(^{1/2}\) بر حسب hv محاسبه و نتایج آن‌ران
ZnO/TiO۲
نام ذرات خالص و نانو ذرات هسته/بوسته ZnO
در شکل ۶ (ب) ارائه شده‌اند. نتایج بدست آمده نشان دهنده
یافته‌ای به سمت طول موج‌های قرمز بعد از شکل گرفتن
پوسته‌های TiO۲ بر روی هسته‌های ZnO است. کاهش
انرژی ناحیه متنوعه از ۴۳ الکترون ولت برای
ZnO خالص به ZnO/TiO۲ الکترون ولت برای هسته/بوسته‌های TiO۲.

جذب‌یابی طول موج مدل با ۲۳ نانومتر را نشان می‌دهد.

[الف]

[ب]

[ج]

شکل ۵- (الف) تصویر TEM نانوکامپوزیت‌های
هسته/بوسته ZnO/TiO۲
شکل ۶- (الف) طیف جذبی مرئی-فرانبش و (ب) نمودار
ZnO ناحیه انتزای فوتون برای نانو ذرات و
ZnO/TiO۲ بر حسب انرژی فوتون برای نانو ذرات و
ناموفقی هسته/بوسته.

برای محاسبه انرژی ناحیه متنوعه از معادله

Kubelka-Munk به صورت زیر استفاده شده است [۲۰]:
جدب اشباع معکوس دفوتوتونی افراشیش‌یافته در نانوکامپوزیت‌های هسته/پوسه‌های

3- بررسی های جذب دفوتوتونی

گذاره‌های پهن‌دار، شده‌های ارغامش‌های رویه‌های
رژه‌یکی به بازی

اصل والگم از نانو کامپوزیت‌های هسته/پوسه ZnO

شادن باه. شرایط دفوتوتونی (مقدار ۱)

توضیح داده شده شد. مشاهده می‌شود در اثر

نقطه‌کا شانه فر د متره مستند شده جذب غیر

کل اشباع معکوس را تحت تاثیر میدان‌های قوی لیزری

نشان می‌دهد. بدیجید جذب اشباع معکوس مشاهده شده

در نانو درات مستند شده تحت تاثیر پترولی با طول موج

۵۲۵ نانومتر را می‌توان به بدیجید غیر خطرها جذب دو فتوتونی

نسبت داد. از اندازه ارزی‌های یاد می‌شود نبست آمده

از شکل ۶ (ب)، رخاد جذب دو فتوتونی در هر دو نانومتر

مستند شده تحت شرایط نوری حاصل کل اندازه، شناس

اساس شرط دفوتوتونی هنگام که ارزی‌های ممکن‌های

ساختارهای مواد رسانای بسیار بزرگتر از انرژی

فتوتون‌های تابشی باشد (hv) (E > hv)، با این حال شرط

جذب نوری از طریق جذب هم‌مان و

فتوتون انتقال می‌افتد (21).

بنابراین، ضرایب مربوط به جذب غیر خطری مشاهده

شده در اثر رذابی‌های پرتو لیزر می‌توانند از پترولی

تجربی با ماده‌های حاوی جذب دفوتوتونی (مقدار ۱)

حاص. شاه‌کاهن را که در شکل ۷ دیده می‌شو، پترولی

نظری منحنی‌های حاصل از جذب دفوتوتونی انطاق بسیار

خوی را با نتایج تجربی مشاهده می‌دهد. ضرایب جذب دو

فتوتونی نمودن‌های مستند شده براساس داده‌های تجربی.
تشان داده است که علایه بر مشخصه‌های ساختارهای کریستالی می‌تواند منشا گرفته و از ویژگی‌های منبع لیزر تحریکی نیز باشد.

شکل 7- گرافی به‌نهاز شده تجربی بر روی Z دریچه باز به همراه برای شو در نظری در حضور (الف) نانو ذرات ZnO/TiO_2 و (ب) نانو کامپوزیت‌های ZnO/TiO_2.

جدول 1- مشخصه‌های نوری نانو ذرات ZnO/TiO_2 و نانو کامپوزیت‌های ZnO/TiO_2:

<table>
<thead>
<tr>
<th>نوع ذوب دیزاین</th>
<th>ضریب جذب</th>
<th>ویژگی</th>
<th>خصدر</th>
<th>نامونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>1.42×10^{-5}</td>
<td>257</td>
<td>ZnO</td>
<td></td>
</tr>
<tr>
<td>ZnO/TiO_2</td>
<td>1.2×10^{-5}</td>
<td>272</td>
<td>ZnO/TiO_2</td>
<td></td>
</tr>
</tbody>
</table>

افزایش ضریب جذب در نانو ساختارهای ZnO/TiO_2 نسبت به نانو ذرات ZnO خالص را می‌توان به هیتروجانکشن‌های شکل خاصی در مرز مشترک بین نانو ساختارهای ZnO و TiO_2 و ZnO و TiO_2 نسبت داد. با فرض قرارگیری ترازهای انرژی یوسته به اکسید تیتانیوم در موقعیت پتانسیل منفی تر از هسته اکسید روی [24]، می‌توان تجییه گرفت که بعد از جذب فوتون‌ها و انتقال الکترون‌های تولید شده نوری از باند تظریت به باند رساتش، TiO_2 جذب اشباع مکوسوس از انتقال الکترون‌ها از باند رساتش یوسته به باند مناطق آن در ساختار هسته اتفاق می‌افتد.

نتیجه‌گیری:

نیروهای نانو کامپوزیت‌های ZnO/TiO_2 و نانو کامپوزیت‌های ZnO و نانو کامپوزیت‌های ZnO، به همراه برای شو در نظری در حضور (الف) نانو ذرات ZnO/TiO_2 و (ب) نانو کامپوزیت‌های ZnO/TiO_2.

هر دو نمونه سنگ نشین نشان داده. نتایج حاکی از افزایش

ساختارهای هسته/پوسته در مقایسه با ساختارهای

خالص بود.

5-سیاست‌گزاري

این پژوهش مستخرج از پایان نامه دانشجوی مقطع

کارشناسی ارشد و با حمایت دانشگاه آزاد اسلامی واحد اهواز

شکل گرفته است.

مراجع

[20] M. Kwiatkowski, R. Chassagnon, N.