فصلنامه علم پژوهشی
دوره 2، شماره 3، تابستان 1397

جذب اشباع معکوس دوافتونی افراشی یافته در نانوکامپوزیت‌های ZnO/TiO$_2$

مهسا حسینی 1، آزاده حقیقت‌زاده 2، 3، پاکز مزنیانی 4

1 گروه فیزیک، پردیس علوم و تحقیقات خوزستان، دانشگاه آزاد اسلامی، اهواز، ایران
2 گروه فیزیک، اعدادهای، دانشگاه آزاد اسلامی، اهواز، ایران
3 گروه مهندسی مواد، دانشگاه ملی، ایران
4 ahaghizadeh@yahoo.com

چکیده:
در این پژوهش نخست سه نانوکامپوزیت ساختاری ZnO با استفاده از روش هیتروپروکسید سدیم و ZnO/TiO$_2$ با استفاده از روش تریکلوروآنیل می‌باشد و در مراحل بعد بودیت 1 نانوکامپوزیت ZnO/TiO$_2$ رشد هم‌سوسیتی بر روی نانوتانیاکه یافته شده در این مطالعه. فیزیکی و عصبی توسیع آرسون پرایم (EDX) و سنجی ریسی با استفاده از نمای صفحه‌ای (XRD) و اندازه‌گیری نمای ناحیه (FE-SEM) و فتوسنسورکاپ خواص الکترونی عبوری (TEM) نشان داده شد. مایع تغییر طول موج پیشنهادی و توزیع ناحیه متفاوت از درون کامپوزیت (UV-vis) استفاده شد. برای مقایسه طبیعی جداک‌ها دوافتونی از روش روش‌های دریچه‌ای به بهره‌گیری که تنها افراشی ضریب جذب دوافتونی اشباع معکوس را به از قرار دادن به پایین‌تر و در اکسید پتاین‌پویه‌هایی که به کمک ریز خاکی نشان داده می‌باشد.

اطلاعات مقاله:
دریافت: 7 مهر 1397
پذیرش: 12 آذر 1397

کلید واژه:
نانوکامپوزیت‌های ZnO/TiO$_2$، دوافتونی، فیزیکی

1- مقدمه
در سال‌های اخیر توسعه مواد نوری غیر خلیفی به دلیل ویژگی‌های منحصر به فردشان در کاربردهای وابسته به فناوری نیو بسیار سود توجه محققین قرار گرفته است. نسل جدید ایزرازآی‌های الکترونی دنیا کاربردهای گسترده در ارتباطات مخابراتی، ذخیره‌سازی اطلاعات و کلید زنی نوری و پردازش سیگنال، درجه بالایی از پیشرفت را برای مواد نوری غیر خلیفی در این زمینه در آورده‌اند.
جذب اشباع معکوس دوفوتونی افراشی پانئیت‌های هسته/پوسته زنیو/تیو

همکاریان در پژوهش، اثرات پوسته Au بر روی خواص نوری، گیرنده‌ای و اثرات محدود پنهانی نانوساختارهای هسته/پوسته ZnO/TiO2 شده به روش تولید هارمونیک دوم و جذب چند فوتون، توجه به تحقیقات و کاربردی بالا در رابطه با عنوان نانو بازیگری زیستی در حوزه تصویر به دارد نوری خیلی جلب کرده است.[1]. در همین راستای محققان افراشی های متعددی را در خصوص رفتارهای نوری خطی نانوساختارهای اکسید روی ارائه داده‌اند. در تحقیقی، Valligatala و همکاریان جدید نور خیلی افراشی پانئیت‌های حدود ۶۶-۶۷ cm/W تک فوتونی اکسید روی ساخته شده به روش اسپاینرینگ Gزارش کردند.[2] در پژوهشی دیگر، Ying و همکاریان آرایه‌های نانو ذرات Au/ZnO را با استفاده از روش ایالوگرافی بر روی تار ایاله‌ای کوارتز پوشش دهی کرده و خواص نوری گیرنده‌ای آنها را با بدست آوردن پذیرفتهای لیتوگرافی در نانو ذرات بلوری در ساختارهای کامپوزیتی در کتار نیمه رسانش باعث افزایش بهره خیلی نیمه رسانش‌ها می‌شود. مطالعات اخیر روش قابل ملاحظه‌ی مشخصه‌های غیر خطی می‌باشد در ساختارهای هسته/پوسته نشان‌دهنده هسته/Agu Mathew و همکاریان طی پژوهشی کوارتور CdSe/ZnS، دانه‌های هسته/پوسته به روش میکروامپسیون سنتز کرده و بهره‌هایی را در جذب نوری خیلی و آسانی محدود پنهانی نوری ساختارهای هسته/پوسته مشاهده کردند[۱]. علاوه بر این، Mathew در سال‌های اخیر، تحقیقات سگزدیده‌ای در خصوص سنتز و مشخصه‌های نانو ذرات هسته/پوسته ZnO/TiO2 با استفاده در ساختار کریستالی نانو ذرات TiO2 نسبتی داده‌اند[۱].
2- روش ساخت نانوذرات ZnO\(\cdot\)TiO\(\cdot\)
نанوذرات آکسید روی به روش همرسومی با استفاده از پیش‌مانده‌ای استرات روی ذره آلی و هیدرکسید سدیم تهیه شدند. برای این منظور محلول مولاری استرات روی ذره آلی و محلول 0.5 مولار هیدرکسید سدیم به طور جداگانه در 300 میلی لیتر آب مکشته شده، به مدت 2 دقیقه تحت همزنی بیوسته قرار گرفتند. محلول‌های بسته‌ای قطعه به طور همزمان به یک نوار خالی وارد شده و به یک همزن مغناطیسی به مدت 2 ساعت به یکدیگر در دمای آتاق هرم زده شدند. رسم سطح رنگ حاصل توسط دستگاه سانتریفوژ با سرعت 4000 دور بر دقیقه به مدت 10 دقیقه جمع آوری و پس از شستشو با آب مکث و تانیل 96 درصد در دمای 80 درجه سانتی‌گراد. در نهایت مخلوط بسته‌ای در کوره الکتریکی و در دمای 35 درجه سانتی‌گراد، به مدت 2 ساعت تحت عملیات حرارتی کلسیم شد.

3- روش ساخت نانو کامپوزیت‌های ZnO/\(\cdot\)TiO\(\cdot\)
به‌وسه \(\cdot\)یابی تجربی
در این مرحله برای تهیه نانوذرات هسته/پوشش ZnO/\(\cdot\)TiO\(\cdot\) به‌وسه کمک‌های \(\cdot\)کمک‌های زمانی از هیدروکسید سدیم (\(\cdot\)TTIP)، تیتانیوم از مولکول‌های (\(\cdot\)NaOH)، هیدروکلراید (\(\cdot\)TTIP)، اسید \(\cdot\)هیدروکسید به روش
\(\cdot\)C\(\cdot\)H\(\cdot\)O\(\cdot\)H\(\cdot\)CI و اتانول (\(\cdot\)96 درصد) خریداری شده از شرکت مرکز جهت تهیه نانوذرات کامپوزیت‌های هسته/پوشش ZnO/\(\cdot\)TiO\(\cdot\) استفاده شد. همچنین از آب مکث در طول فرایندهای آزمایشگاهی بهره‌گیری شد.
جذب اشباع معکوس دوفوتونی افراشی یافته در نانوکامپوزیت‌های هسته/بوسته

ساترینیفورز با سرعت 400 دور در دقیقه فارابند رسوب گریز به مدت 10 دقیقه انجام شد. رسوب بسته آبده پس از شستشو با آب مفتقر و اتانول به مدت 12 ساعت در دمای 90°C خشک و به مدت 12 ساعت در کوره الکترونیک تحت عملیات حرارتی با دمای 550°C کلسیم شد.

2- شناسایی و اندازه‌گیری

به منظور بررسی فازهای موجود در نانو ذرات تهیه شده، از الگوهای XRD ثبت شده با استفاده از پرتو XRD ایکس مدل DSDAVANCE‌ با واترها 40 کو و جریان ساکت شرکت BRUKER با لامپ مسی و طول موج 45° A موجب است. به منظور بررسی سطح نانوذرات و اطلاعات ریخت شناسی از میکروسکوپ الکترونی SIGMA VP-500 (FE-SEM) رویشی نشر مدل BRUKER ساکت شرکت سی آلمان و همچنین میکروسکوپ الکترونی عبوری (TEM) مدل EM10C-100KV SIESS بهره گیری شد. از طرف نانوهای پرتو ZEISS برای بررسی BOMEN/MB102 (EDX) مدل 1002 شناسایی شد. مطالعات نوری خطی برای تحلیل ریخت غیرمنشی - فرابنشت ساکت AVASPEC-2048-TEC برای کاربرد استفاده شد. خواص نوری غیر خطی توسط دستگاه AVALAMP DH-S انجام شدند.

3- چیزمان آزمایشگاهی

برای مشاهده پاسخ‌های غیرخطی نانوذرات سنتز شده از روش روش-2 با چیدمان درونی باین استفاده شد. آراسی بربای چیدمان استفاده شده جهت بررسی رفتار یکی از خطی و اندازه‌گیری گیری ضرایب جذب دو فوتونی در شکل 1

شکل 1- آراسی بربای چیدمان روش-2 روزنه باز.

نمودهای نوری از آراشی شده با مشخصه‌های جذب غیر خطی، چگالی نابرابر انتقال فانیه‌های غیرEntreax و در تغییرات ناپتیک کانتون نشان می‌دهد. برای چنین نمونه‌هایی، هر انحرافی در شدت انتقال فانیه‌های ناشی از فرابندهای جذب چند فوتونی است. در محدوده‌های تابشی
۳- نتایج و بحث

۳-۱ بررسی‌های ساختاری و عنصری

الگوهای برای بروز ایکس نمونه‌های ZnO خالص و نانوساختارهای ZnO/TiO۲ دسته‌ساختارهای خاص و نانو در هسته/پوسته ساختاری مورد بررسی قرار گرفته در شکل ۳ دارد. عناصر اکسید و اکسید آناتازی در حدود ۲۴/۷۳ و ۲۰/۷۵ درصد گونه‌های حاوی هگزافکتال بودند. نانوساختارهای خالص و نانوساختارهای ZnO/TiO۲ با استفاده از رابطه معادله ۴ ترتیب بر اساس طبقه‌بندی (۱) مربوط به هگزافکتال گزارش می‌شود. نانوساختارهای خالص ZnO/TiO۲ با آنتانز و اکسید TiO۲ دارای اکسید ریو نانوساختارهای خالص و نانوساختارهای ZnO/TiO۲ با استفاده از رابطه معادله ۴ ترتیب بر اساس طبقه‌بندی (۱) مربوط به هگزافکتال گزارش می‌شود.

به منظور بررسی اثرات کتابی کامپوزیت سنتزی EDX ساختارهای نانو در ساختارهای هسته/پوسته و بر پایه آنتانز ZnO/TiO۲ مورد بررسی قرار گرفت. در شکل ۳ دارد. عناصر روی، تیتانیوم و اکسید آنتانز در حدود ۲۴/۷۳ و ۲۰/۷۵ درصد به شکل ماتریک ساختارهای جدید با کاراکتر مرجع به شماره ۲۰۰۱-۰۰۰۰ تکمیل ساختارهای اکسید تیتانیوم با آنتانز و اکسید TiO۲ دارای اکسید ریو نانوساختارهای خالص و نانوساختارهای ZnO/TiO۲ با استفاده از رابطه معادله ۴ ترتیب بر اساس طبقه‌بندی (۱) مربوط به هگزافکتال گزارش می‌شود.

\[
\beta = \frac{q_0 (1 + \left(\frac{Z_n}{Z_0}\right)^2)}{I_0 L_{eff}}
\]

که در آن \(q_0\) به گذار به‌هم‌جوار شده (عمق دره با ارتفاع \(L_{eff}\) به قله ظاهر شده در منحنی گذرگاه بر حسب فاصله \(x\)) و به طول موتر نمونه با ضریب جذب خطي \(\alpha\) مطابق معادلات زیر ارایج داده می‌شود.

\[
T(z) = 1 - \frac{q_0}{2z^{3/2}}
\]

\[
L_{eff} = \frac{1 - \exp(-\alpha L)}{\alpha}
\]

\[
z_0 = \pi / \omega_0 \lambda
\]

که در آن ل ضخامت نمونه ایست. همچنین طول موتر بر حسب فاصله \(x\) به گذار موج است. با در نظر گرفتن کمتر بر حسب \(z_0\) به طول موتر (\(z_0\)) به طول موتر در کانوین \(L_{eff}\) به ترتیب \(1/2\) لوله‌های ۴۰۰-۳۲۰×۱۰۶ اندامه گیری شدند.
به منظور تشخیص دادن ساختارهای هسته/یوسته برای نانوکامپوزیت‌های سنتشده، تصویر TEM گرفته شده از نانوذرات ZnO/TiO۲ در شکل ۵ (الف) نشان داده شده است. شکل ۵ (الف) تشکیل موفق ساختارهای هسته/یوسته ZnO/TiO۲ را نشان می‌دهد. این نمونه‌ها در اطراف هسته‌های اکسید رز سیاه رنگ نشان می‌دهند. این نمونه‌ها از نظر افزایش ترکیب نانوذرات در این ساختارهای هسته/یوسته استفاده از نرم‌افزار Bragg's Law تصویر ImageJ بررسی و نتایج عدیدی آنها به ترتیب در نمودارهای توزیع ذرات ارائه شده در شکل‌های ۵ (ب) و (ج) نشان داده شدند. نتایج بدست آمده میانگین اندازه‌ای در حدود ۲۴ و ۱۳ نانومتر را به ترتیب برای اندازه‌گیری ذره و ضخامت یوسته نشان می‌دهند.

۱-۳- بررسی های فیزیک‌شناختی مرنی- فرابنفش

در شکل ۶ (الف)، نیروی جذبی مرنی- فرابنفش نانوذرات ZnO/TiO۲ خالص و نانوکامپوزیت‌های هسته/یوسته ZnO در گستره طول موجی ۲۰۰ تا ۸۰۰ نانومتر نشان داده شده است. نرخ نانوذرات در شکل ۶ (ب) و (ج) نشان داده شده است.

۲- بررسی‌های ترکیبی و ساختاری و ریخت‌شناختی

شکل ۶ تصویر FE-SEM نانو هسته/یوسته ZnO/TiO۲. میزان ساختارهای ZnO/TiO۲ و نانوذرات در هسته/یوسته ZnO/TiO۲ به وسیله EDX به دست می‌آید.

۳- ترکیب‌شناسی

شکل ۶ تصویر FE-SEM نانوذرات ZnO/TiO۲ و نانوذرات در هسته/یوسته ZnO/TiO۲ به وسیله EDX به دست می‌آید.

۴- تعیین میزان ساختارهای ZnO/TiO۲ و نانوذرات در هسته/یوسته ZnO/TiO۲ به وسیله EDX به دست می‌آید.

۵- تقسیم‌بندی یکنواختی را نشان می‌دهد.
(αhv) = A(hv - E_γ)^2

درجایی که α ضریب حذف انتزای فوتون، A ثابت تناسب hv انتزای فوتون، و E_γ انتزای ناحیه منشأ شده متقابلیت انتزای ناحیه منشأ و بر حسب hv محاسبه و مطالعه آن‌رای ZnO/TiO_2

نتایج این ذرات در ناحیه فرابنفش با شیب تنگی در 365 نانومتر به سمت ناحیه مرئی است. با این وجود بررسی طیف جذب نانو ساختارهای هسته/پوسته، قلمای را به عنوان قله جذب مشخصه نشان نمی‌دهد.

در شکل ۶ (ب) ارائه شده، نتایج بدست آمده نشان دهنده جابجایی بسیار طول موج‌های قرمز بین شکل گرفتن بر روی هسته‌های ZnO پوسته‌های TiO_2. با ایجاد انتزای ناحیه منشأ و است و برای ZnO تا ۲/۳ الکترون ولت برای هسته/پوسته‌های ZnO/TiO_2

جابجایی طول موجی مدل با ۲۳ نانومتر را نشان می‌دهد.

![شکل ۶](image)

جوض‌هایی در اندازه حساسیت کم تعداد ذرات ZnO/TiO_2 نانوکامپوزیت‌های هسته/پوسته و (ج) نمودار توزیع ضخامت پوسته.

برای محاسبه انرژی ناحیه منشأ از معادله:

Kubelka-Munk

برای محاسبه انرژی ناحیه منشأ از معادله:

برای محاسبه انرژی ناحیه منشأ از معادله:

Munk

در جدول ۱ نشان داده شد که در این زمینه به صورت زیر استفاده شده است:

<table>
<thead>
<tr>
<th>Eγ (eV)</th>
<th>ɑ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eγ (eV)</th>
<th>β (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

در جدول ۲ نشان داده شد که در این زمینه به صورت زیر استفاده شده است:

<table>
<thead>
<tr>
<th>Eγ (eV)</th>
<th>γ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eγ (eV)</th>
<th>δ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
بدست آمده از 7(گذشته شده (x) در نقطه کانونی r=11 cm و همچنین با به کارگیری معادله 1 محاسبه و نتایج عدیه آنها در جدول 1 این آنها شده است.
نتایج بدست آمده نشان دهنده ضریب جذب اشباع معکوس افزایش یافته بعد از فرآیند هسته سازی برابر نانو
ذرات ZnO است. نتایج نشان می دهد که قرار دادن نانو
ذرات در ذرات پوشش یافته و در اثر افزایش
ضریب جذب اشباع خصوصی دو فوتونی در حدود 4 برای
افراشی داده است. دهنده پور و همکارانش ضریب جذب
غیرخطی به میزان ـ1.0×10^-3 m/W و در حدود
0.78×10^-1 m/W/W در حدود 4 برای Ag2S/ZnS
و همکارنش برای ضریب جذب غیرخطی Mathew [22]
را برای هسته های دیده شده به روش ماکرو و سریع یافته
اراته که افزایش در حدود 5 برای ساختارهای
هسته/پوشش نسبت به هسته های
نشان می دهد Ag2S/Ag2S:ZnS
و همکارنش برای ضریب جذب غیرخطی
دهندگان که افزایش در حدود 4 برای
سریع ساختارهای
هسته/پوشش نسبت به هسته های
نشان دهنده افزایش در حدود 4 برای ساختارهای
هسته/پوشش نسبت به روش ماکرو و سریع یافته
قاتیه [22] [8] با یک وجود ساختارهای
هسته/پوشش کاهشی را در ضریب جذب
غیرخطی به حدود 1.0×10^-18 m/W و در حدود
1.0×10^-19 m/W/W بعد از پوشش گذاری با
اراته دادهاندا [23] در مقایسه با نتایج حاصل
شده از سنتز ZnO/TiO2 در گذشته پویش، ساختار
هسته/پوشش نسبت به گذرگری را
شده در این پژوهش، جذب غیرخطی نسبت به گذرگری
را

3- بررسی های جذب دو فوتونی

گذارهای پنهنجر شده آرامش های روبش-z-روش با برای
ناتو ذرات خالص و نانو کامپوزیت های هسته/پوشش ZnO/TiO2
به ترتیب در شکل 7(الف) و (ب) نمایش داده شده است. به طول لبه
میزان آرامش گذارهای روش-z- است. مطلوب توجه
پیشتر توضیح داده شد مانند در اطراف
نقطه کانونی برای هر دو نمونه سنتز شده حضور جذب غیر
خطی اشباع معکوس را تحت تاثیر میدان های قوی لرزی
نشان می دهد. بدست آمده جذب اشباع معکوس مشاهده شده در
نامه ذرات سنتز شده تحت تاثیر پرتوهایی با طول موج
523 نانومتر را میتوان به دیده غیر خطی جذب دو فوتونی
نسبت داد. از انداره های ارتدوکسی یافته میتوانست به حدود
از شکل 4(ب)، رشد جذب دو فوتونی در هر دو نمونه
سنتز شده تحت شرایط نیکل میتواند افت این
اساس شرط دو فوتونی هنگامی که انتزاع تهیه میتواند
ساختارهای مواد نیمه رسانای با بزرگی از انرژی
فوتونی تابشی باشد (hv)، (E_g > hv)
با ایجاد شرط
2hv > E_g > hv
فوتونی انتقال میفتد [21].

بنابراین، ضرایب مربوط به جذب غیر خطی مشاهده
شده در اثر ردیابی های پروتو لیزر میتواند از برایش دادهای
تجریب با معادله حاصل از شرایط جذب دو فوتونی (معادله 1)
حاصل شود. الگوریتم که در شکل 7 دیده می شود برایش
نتیجه منجی های حاصل از جذب دو فوتونی انتقال بسیار
خوبی را با نتایج تجربی نشان می دهد. ضرایب جذب دو
فوتوئی نمونه های سنتز شده برای سنتز داده های تجربی

دوره 7 شماره 2 تابستان 1397 72
نشان داده است که، علاوه بر مشخصه‌های ساختاری کربناتی می‌تواند منشا گرفته از ویژگی‌های منبع نیز جذب تحریکی نیز باشد.

شناسایی ساختارهای نانوساختاری ZnO/TiO$_2$ نسبت به ناحیه ذرات TiO$_2$ در نانوساختارهای کربناتی حاصل را می‌توان به ساختارهای نانوساختاری ZnO/TiO$_2$ تهدید شده‌اند. گرچه به مرحله حضور ذرات TiO$_2$ تبدیل نشده باشد. بررسی نواحی متنوعی از ساختارهای نانوساختاری ZnO/TiO$_2$ نشان داد که ناحیه ساختارهای نانوساختاری ZnO/TiO$_2$ مشاهده شده در ناحیه ساختارهای نانوساختاری ZnO/TiO$_2$ در اطراف ساختارهای TiO$_2$ سیاه رنگ تصفیه گرفته شده توسط میکروسکوپ الکترونی عبوری تایید شد. مطالعات طیف نوری جابجایی به سمت طول موج‌های مرز ناحیه طیف الکترونیک متسامی را برای این ناحیه نشان می‌دهد.

جدول 1 - مشخصه‌های نوری نانوساختارهای ZnO/TiO$_2$

<table>
<thead>
<tr>
<th>ضریب جذب</th>
<th>ویژگی</th>
<th>نامنه</th>
<th>خطی</th>
<th>$eta$(m/μ)</th>
<th>a(m^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO/TiO$_2$</td>
<td>3/12/2010$^{-3}$</td>
<td>25/7</td>
<td>ZnO/TiO$_2$</td>
<td>3/12/2010$^{-3}$</td>
<td>25/7</td>
</tr>
</tbody>
</table>

[20] M. Kwiatkowski, R. Chassagnon, N.