مطالعه تأثیر افزودن ماده تالک به ترکیب انگوب کاشی سرامیکی بر میزان جذب آب و خواص فیزیکی آن

الهام رزاقی، ۱ محسن خواجه امینیان، ۲ حکیم زارع ۲

کارشناسی ارشد، آزمایشگاه تاندرتکنولوژی و پوشش‌های سرامیکی، دانشگاه فیزیک، دانشگاه تهران، پردیس ایران

استادیار، آزمایشگاه تاندرتکنولوژی و پوشش‌های سرامیکی، دانشگاه فیزیک، دانشگاه تهران، پردیس ایران

* kh.aminian@yazd.ac.ir

اطلاعات مقاله:

دریافت: ۱۰ اردیبهشت ۱۳۹۷
پذیرش: ۱۸ آذر ۱۳۹۷

کلمه کلیدی:
تالک، خشک، جذب آب، انگوب، دویوخت، کاشی سرامیکی

چکیده:
از منابع مهی باری ایران‌سازی سرامیک‌های ساختمانی میزان جذب آب اثرات جذب آب در سرامیک مواد کشیده‌سازی و جدایی لامب از بدن است. میزان تخلخل‌های موجود در ساختار انگوب و جذب از عناصر آلکاات در جذب آب کاشی سرامیکی است. و روغت از کاهش حسپف، مؤثری روی این اثربخشکی اما انتقال آب به سطح کاشی و سرامیکها باعث می‌شود. با برتری از روغنی مناسب برای روغت و کنترل جذب آب تغییر در ترکیب انگوب و همچنین انواع مواد کنترل اثرات است. در این پژوهش، ساختار انگوب تالک به سه کلیه مول مورد استفاده در صنعت کاشی کلیسی، کلیه دویوختی (Mg3Si2O5(OH)4) و کلیه گردویی (GMO) به منظور کنترل جذب آب در ساختار انگوب بررسی شده است. مواد اولیه ساخت انگوب شامل گردویی و برشی از ا;;;;; dv صنعت انگوب در هر ۵ دهه به مدت ۱۱۶۰ درجه ساختمانی با دمای ۴۵ دگرگونی در کنار خاص خارجی تیز و نخال جذب آب در کنار خاص رضایت دهنده می‌باشد. کلیه‌های به این‌سان تالک اثر کاهش جذب آب در سعت کاشی فیزیکی مخلوط مشاهده میگردد. استفاده کلیه کلیه دویوختی با افزودن کلیه پینشتر و سیلیسی (SEM) مورد ارزیابی و بررسی قرار گرفته. این تحقیق می‌کنیم که نشان‌گر که کلیه دویوختی با افزودن کلیه دویوختی ترانک آبک‌‌ جنگ آب به‌عنوان کاسه‌ کاهشی اقدام می‌کند. از نظر جنگ آب به‌عنوان کاسه‌ کاهشی به کلیه دویوختی

۱- مقدمه

یکی از مطالعات سرامیکی بسیار مهم در صنعت ساختمان کاشی‌های سرامیکی هستند که به عنوان پوشش روی دیوارها و یا فضای کف استفاده می‌شود. علاوه بر جنبه تزئینی، این محصولات به حفظ پهناوردات محیط کمک کرده و از نفوذ رطوبت جلوگیری می‌کند. کاشی‌ها و پوشش‌های سرامیکی متشکل از دانه‌های ظرفیت مثبت و ساختار است که معمولاً در دمایه بالاتر از ۱۰۰۰م. درخت داده می‌شود.

۷۷
انگو از نظر خواص نوری رنگ‌گانه‌های سفیدی هستند که در آن یکش شده و با تابش پرتو، پازتاب و شکست‌هایی در همه جهته ایجاد كرده و موجب شده است که رنگ بدن نحذف و قابل مشاهده نباشد، پس سطح انگو سفید دیده می‌شود [21]. هرگاه پودر شرده‌ای دیگر در دمای کوره که پایین‌تر از نقطه ذوب آن است بخشد شود، ذوب پودر به یکدیگر گروه خورد و فضای خالی بین ذرات آن کاهش می‌یابد، ولی ذرات به خویش زنده می‌شود [3] و تخلخل هایی در ساختار کاشی بیانی می‌گردد. وجود یک انگو و لعب ممکن است لایه انگو و لعب از بدن کاشی به صورت پوکل بلند شود. روش‌های مختلفی به منظور کاهش تخلخلها گزارش شده است [4]. لعب سرامیک معمولاً در دمای بالاتر از 900 یکخت می‌شود. اندوه ذرات انگو نیز برگزیده از لعب پودر و در مقیاس میکرومتري است. بنابراین اگر اندازه ذرات به اندوه طول موج نور متنی تا حدود ۵/۰ میکرومتر باشد پشت یوشی انگو بهتر انجام می‌گردد [5]. معمولاً از ترکیبات اکسیدی و سیلیکائی برای ایجاد سفیدی انگوب استفاده می‌شود [۸۷]. اصلاح فرمول انگوب با افزودن ماده‌گنداره آب از جمله روشهایی است که برای کاهش تخلخلها و بهبود ذوب آب می‌توان به کار برد. استفاده از ماده گنداره آب باعث می‌شود این ماده در دمای پایین ذوب شده و کاهش تخلخلها و یک‌واکنش‌تر شدن ساختار انگوب را باعث می‌شود. تاکنون پژوهش‌های کمی راجع به کاهش ذوب
در این پژوهش، اثر افزودن تالک در ترکیب شیمیایی گرفته کالسی بررسی شده است. ابتدا 3 نمونه مرحله به نام‌های a، b و c ساخته شد که به ترتیب 29/0، 28/3 و 27/6 درصد کلسیم و 71/0، 71/7 و 71/3 درصد کلسیم به میزان یکسان به کار رفته است. سپس به نمونه‌های مرحله 4 کمک تالک (از معدن جنگل اصفهان) افزوده شد و به ترتیب A، B و C نامیده شدند. در مرحله ساخت کالسی، بعد از لایه انجام، لایه گلوار کردن است که ترکیبات آن به همراه درصد وزنی آنها در جدول 3 بیان شده است. همچنین اجزای تشکیل دهنده فریت 4 به کار رفته در جدول 3 آمده است. در فریت 40 درصد کلسیم کربنات و در فریت دولومیت 60 درصد دولومیت استفاده شده است. بقیه مواد درون فریت 40 درصد کلسیم و فریت دولومیتی نیز با نسبت متفاوت موجود است.

جدول 3: اجزای تشکیل دهنده انگوب

<table>
<thead>
<tr>
<th>c</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>مواد</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>فریت 4 (GMO)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>غیر گرفته (کلسیم گرابن)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>غیر گرفته (کلسیم دومین)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>غیر گرفته (کلسیم تالک)</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>کانون (KCR)</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>بال کلی (KOC-P)</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>فلدسیار (BLC)</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>کانون (KCC)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>زیرکون (ZrSiO4)</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>فلدسیار پتاسیک</td>
</tr>
</tbody>
</table>

جدول 1: ترکیبات شیمیایی برخی از مواد استفاده شده در ساختار انگوب

<table>
<thead>
<tr>
<th>ترکیبات</th>
<th>تالک (KCC)</th>
<th>کانون (KCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیمیایی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>52/44</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>25/64</td>
<td>26/65</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>TiO2</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>CaO</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>MgO</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>Na2O</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>K2O</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>SO3</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>LOI</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>MnO</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>P2O5</td>
<td>0/1</td>
<td>0/1</td>
</tr>
</tbody>
</table>
2- روش کار
نمونه‌های ساخته شده در این تحقیق، براساس ساخت نمونه‌های کاشی، شامل پیستون، انگور و لعاب است. که مراحل ساخت آن در شکل 1 نشان داده شده است. در ابتدا آزمایش مواد لازم برای ساخت انگور و لعاب مطابق جدول 1 با دو نوزده شده و همراه با 40 میلی لیتر آب در بالامیل به مدت 24 دقیقه قرار داده شد تا مواد به طور همگن با هم مخلوط شود. و دوگاه به توجه به شود به منظور یکسان سازی و سیستمیک دوگاه‌ها نسبت به دوگاه نمونه مرجع، به بخشی از دوگاه‌ها مقدار کمی آب افزوده شد. سپس دوگاه از صافی با حرارت به قطر 177/0 میلی مت وسط داده شدند. انگور ساخته شده بر روی بدن بنا استفاده از وسیله به نام اسلش به صورت دستی لایه‌شناسی شدند. اسلاش قابل مستطیلی شکلی است که مواد انگور در آن ریخته شده و به صورت دستی با سرعت یکسان بر روی بدن کاشی لایه‌شناسی شدند. به منظور پخت نمونه‌ها، کاشی‌های حاضر به روش تک یکت با استفاده از کوره سنتی با طول 100 متر با دمای 1134 در مدت زمان 42 دقیقه یکت شدند.

جدول 3- اجزای تشکیل دهنده لعب لاشه نشانی شده بر روی بدن

<table>
<thead>
<tr>
<th>مواد</th>
<th>درصد وزنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>فریت (فلزی)</td>
<td>80</td>
</tr>
<tr>
<td>کاتالیز (KCC)</td>
<td>15</td>
</tr>
<tr>
<td>زیبرون (ZrSiO₄)</td>
<td>2</td>
</tr>
<tr>
<td>الکمینا (Al₂O₃)</td>
<td>3</td>
</tr>
<tr>
<td>STPP</td>
<td>0/15</td>
</tr>
<tr>
<td>چسب (CMC)</td>
<td>0/15</td>
</tr>
</tbody>
</table>

جدول 4- اجزای تشکیل دهنده فریت گیم اسفتاده شده در کاشی سرامیکی

<table>
<thead>
<tr>
<th>ترکیب فریت</th>
<th>درصد وزنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیلیس (SiO₂)</td>
<td>28</td>
</tr>
<tr>
<td>فلزسیم (Fe)</td>
<td>24</td>
</tr>
<tr>
<td>کلیسیم کربنات (CaCO₃)</td>
<td>16</td>
</tr>
<tr>
<td>زیبرون (ZrSiO₄)</td>
<td>6</td>
</tr>
<tr>
<td>دومونیت</td>
<td>9/5</td>
</tr>
<tr>
<td>برایس</td>
<td>4/5</td>
</tr>
<tr>
<td>کاتالیز (KCC)</td>
<td>10</td>
</tr>
<tr>
<td>سدیم کربنات (Na₂CO₃)</td>
<td>2</td>
</tr>
<tr>
<td>باریم کربنات (BaCO₃)</td>
<td>1</td>
</tr>
</tbody>
</table>

شکل 1- مراحل ساخت کاشی سرامیکی

رنگ سنج Minolta Konica اندازه‌گیری شد و میزان بازتاب نوری و خواص فیزیکی سطح بررسی شد. برای بررسی ریزساختار از نمونه‌ها تصاویر SEM با استفاده از

2- مشخصه‌های نمونه‌ها
در ادامه، خواص نوری، میزان جذب آب، مقاومت خمشی نمونه‌ها بررسی شدند. درایای رنگ با استفاده از دستگاه...
۳- نتایج و بحث

مطالعه ریز ساختار و ریختش شناختی سطح اگربه نمونه‌ها از ترکیبات مختلف الکترونی بررسی شد. شکل ۲، تصاویر الکترونی شناختی از نمونه‌های مرجع C، A و ب توصیف می‌گردد. تصویر ۱۲ نمونه SEM (مرجع), ۳) نمونه A (مرجع), ۴) نمونه B و ۶) نمونه C (مراجع) در سطح اگربه نمونه‌های مرجع، دارای تخلخل‌های زیادی است و همچنین کلیشه‌های شدن ذرات را نشان می‌دهد. بعد از آفودن تاکل به نمونه‌های مرجع، تخلخل‌ها کاهش یافته است و به طبقی تصویر ذرات تناها به خویی سیتی شده و به می‌چسبند. در مقایسه تصاویر زیر مشاهده می‌شود که نمونه مرجع a دارای تخلخل‌های کمتری است و نمونه c دارای بیشترین تخلخل‌ها را در بین نمونه‌ها داراست و با افزودن تاکل مشاهده می‌شود که نمونه A کمترین تخلخل‌ها را دارد.

در این رابطه L۲ قطر قرص بعد از خشک شدن (قیل) از قرص الکترونی بررسی شده یا به عنوان شد. همچنین VEGA3 TESCAN تست که در اینجا W۱ و W۲ از رابطه (W۱-W۲) ابزار گیری در کوره است. همچنین جرم کاهش یافته برابر ۱۸0 C در مدت ۹۰ دقیقه. گرفتگی شدن تا خشک شدن. سپس با پودر کردن به در این دونه ۶۰ ذوب داده شدند. در مرحله بعد، با استفاده از X-PertPro به مقدار ۵۰۵ C در ذوب مدت ۳۰ دقیقه. نمونه‌ها خشک شدن در نهایت قرص‌ها درون کوره با دمای ۱۱۳۳ C به مدت ۴۲ دقیقه. قرار داده شد.

برای اندزه‌گیری درصد جذب آب اگربه، قرص‌های ایجاد شده که از کوره خارج شدند. ابتدا توزین شدن و وزن خشک قرص (Wb) در نزد گرفتن شدن و سپس به مدت ۴۴ ساعت در آب قرار گرفتن و وزن مربوط قرص اندوزه‌گیری شد. با استفاده از فرمول Wb - Wd × 100 Wd دارد. درصد جذب آب C می‌باشد شدن [۱۲]. درصد انقیاب‌‌ها از رابطه L۲ - L۱ × 100 L۲ محاسبه شد [۱۲].
الف) نمونه مرجع (امکان‌پذیر نیست)

ب) نمونه A

ب) نمونه مرجع

شکل ۲- تصویر میکروسکوپ الکترونی روبشی از سطح انگوب الف (مرجع نمونه a [13])، نمونه A (ب) نمونه مرجع b (ب) نمونه مرجع c (ج) نمونه C (ت) نمونه B (ث) نمونه مرجع c (ج) نمونه C
ادامه شکل ۲: تصویر میکروسکوپ الکترونی روبشی از سطح انگورالت (الف) مرکز نمونه a (ب) نمونه b، پ) نمونه مرکز c (د) نمونه B (ت) نمونه c (ث) نمونه مرکز c (ج) نمونه C
مطالعه تاثیر افزودن ماده تالک به ترکیب انگوب کاوش سرامیکی بر میزان جذب آب...

مولکول های آب آن می‌تواند خارج شده و سیلیکات منیزیم تشکیل گردد [12]. در اثر این پدیده هفراتی در ماده بوجود می‌آید [15] و ماده می‌تواند کاهش حجم و انقباض داشته باشد. گزارش‌های دیگر نیز نشان می‌دهد در برخی شرایط شکل ترکیب استاتسیتا می‌تواند باعث کاهش جذب آب شود [13]. از طرف دیگر در برخی شرایط شکل ترکیب استاتسیتا می‌تواند باعث کاهش ضریب انسپرس حرارتی می‌شود. همچنین می‌تواند مقاومت کم‌کننده را ۹۰٪ افزایش دهد [16].

انقباض کاوش مشخصه کاوش تخنل و در هم فروفتگی ذرات انگوب است که موجب مستحکم شدن بدن کاوش می‌شود. میزان انقباض نمونه‌ها در جدول ۸ نشان داده شده است. وزن و وزن اولیه قرنطین، وزن و وزن و طول قرنطین بعد از مرحله خشک و شدن، وزن و وزن و طول قرنطین بعد از مرحله پخت است. بر طبق تابع (جدول ۸) با مقایسه میزان انقباض نمونه‌های میزان قرنطین، میزان نمونه‌های میزان قرنطین، میزان آنتی‌GMO (نمونه a) در داری بیشترین انقباض نسبت به میزان نمونه‌های c است. با افزودن تالک به نمونه‌های مرطع، انقباض افزایش یافت و سختی‌تر پر کرده‌ای را ایجاد کرده است. این نشان دهنده کاهش تخنل‌ها و اتصال ذرات انگوب به یکدیگر است که با تناژ حاصل از تصاویر SEM مطابقت دارد. جرم کاوش یافته برای حرارت در شرایط و در شرایط جاذب آب برای تمام نمونه‌ها نشان داده شده است. در تمام نمونه‌ها گلله‌ها مربوط به ترکیب بافت‌های (SiO₂) با شماره کارت ۲۷۴۵-۰۵۰۱، انستیتو (Mg₆SiO₁₆) با شماره کارت ۲۷۶۳-۰۵۰۱ و کلینوژنیستات (MgSiO₃) با شماره کارت ۲۷۰۵-۰۵۰۱ ظاهر شده است. برای نمونه‌های شامل فیزیکی، فریت دولومیتی و فریت GMO، شدت قله ترکیب MgSiO₃ به ترتیب آن‌ها یافته است. دلیل این امر واقعیت میان اجزاء بوجود آمده از تجزیه ترکیبات موجود در ترکیب انگوب است. منبع منیزیا در نمونه‌های با فریت میزان و فریت GMO میزان و فریت میزان و دومیت است. با توجه به اعمال دمای بیشتر از ۱۴۰۰°C برای ساخت فریت، امکان جدا شدن منیزیا از کربنات و CaO موجود در ترکیب دولومیت وجود دارد. با توجه به میزان از دولومیت امکان تشکیل استاتسیتا نیز فراهم می‌شود. گزارش‌های شکل ترکیب استاتسیتا در دولومیت در دمای حدود ۱۰۰۰°C را نشان می‌دهد [14]. قله‌های نمونه‌های مرطع با نمونه‌های شامل تالک، با هم تطبیق دارند. از تطبیق قله‌های طیف پراش پروتز ایکس نمونه‌های می‌توان تریج گرفت که نمونه در نمونه‌های A، B و C بر اثر حرارت بالا تجزیه شده و به سه ساختار استاتسیتا (Mg₆SiO₁₆) و کلینوژنیستات (Mg₆SiO₁₆) تبدیل شده- است. تالک از هیدرات منیزیم سیلیکات تشکیل شده است. و داری فرمول شیمیایی زیبر (Mg₆SiO₁₆(OH)₂) است. همچنین یکی از ترمین‌کن کاهی است که ساختار به‌ای‌ای داشته و پروتز نیز از نوع پروتز‌های واندرولسن است. هنگام حرارت دهی این ماده تا دمای ۹۰۵°C
وضعیت، لایه انگوب و لعاب را نشان می‌دهد. نتایج نشان می‌دهد با افزودن تالک روش‌های نمونه‌ها نسبت به نمونه مرجع کمتر شده است. ولی با افزودن فریت دولومیت و کلسیمی به ترتیب روش‌های انگوب و لعاب افزایش یافته است.

(LOI) نیز اندازه‌گیری شد. کاهش تخلخل‌ها پس از افزایش تالک را می‌توان به دلیل تجزیه تالک دانست که با خروج آب از ترکیب تالک و تولید گونه‌های جدید از آن حفره‌های ساختار نیز کاهش می‌یابد [16].

جدول ۶ شاخص رنگ‌سنگی نمونه‌های کاشی را در دو شکل ۳- (الف) طیف‌های پراش اشعه ایکس نمونه‌های انگوب (ب) نمودار تحلیل قله‌های پراش نمونه c (مثال)
جدول 5- درصد انقباض قرص‌های انگوب

<table>
<thead>
<tr>
<th>W₁</th>
<th>L₁</th>
<th>W₂</th>
<th>L₂</th>
<th>W₃</th>
<th>L₃</th>
<th>Shrinkage</th>
<th>LOI</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.74</td>
<td>9.68</td>
<td>76.71</td>
<td>9.70</td>
<td>74.10</td>
<td>87.88</td>
<td>3.11</td>
<td>612</td>
<td>a</td>
</tr>
<tr>
<td>81.69</td>
<td>9.60</td>
<td>78.87</td>
<td>9.70</td>
<td>75.90</td>
<td>86.58</td>
<td>4.54</td>
<td>277</td>
<td>A</td>
</tr>
<tr>
<td>82.57</td>
<td>9.64</td>
<td>79.73</td>
<td>9.72</td>
<td>79.87</td>
<td>89.90</td>
<td>3.00</td>
<td>28.6</td>
<td>b</td>
</tr>
<tr>
<td>82.26</td>
<td>9.68</td>
<td>78.88</td>
<td>9.70</td>
<td>75.18</td>
<td>87.00</td>
<td>107</td>
<td>4.07</td>
<td>c</td>
</tr>
<tr>
<td>82.96</td>
<td>9.66</td>
<td>78.59</td>
<td>9.72</td>
<td>78.32</td>
<td>87.44</td>
<td>3.24</td>
<td>234</td>
<td>C</td>
</tr>
<tr>
<td>82.17</td>
<td>9.60</td>
<td>79.90</td>
<td>9.70</td>
<td>75.64</td>
<td>87.00</td>
<td>4.07</td>
<td>234</td>
<td>C</td>
</tr>
</tbody>
</table>

جدول 6- رنگ‌سنجی نمونه‌های انگوب و لعاب

<table>
<thead>
<tr>
<th>انگوب</th>
<th>لعاب</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>66.5</td>
<td>-2</td>
<td>-1</td>
<td>62.3</td>
<td>-2</td>
<td>-1</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.3</td>
<td>-2</td>
<td>-1</td>
<td>61.2</td>
<td>-2</td>
<td>-2</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.2</td>
<td>-3</td>
<td>-3</td>
<td>62.3</td>
<td>-2</td>
<td>-1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66.2</td>
<td>-2</td>
<td>-1</td>
<td>61.7</td>
<td>-1</td>
<td>-2</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.7</td>
<td>-2</td>
<td>-1</td>
<td>63.1</td>
<td>0</td>
<td>-2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66.7</td>
<td>-2</td>
<td>-1</td>
<td>62.4</td>
<td>0</td>
<td>-2</td>
<td>C</td>
</tr>
</tbody>
</table>

نمونه‌های بدون تاکل به‌دلیل تشکیل ترکیب در اثر افزودنی‌ها دانست. گزارش‌ها نشان می‌دهد که کاهش جذب آب شود [۱۳].

نتایج حاصل از اندام‌گیری استحکام خمشی نمونه‌ها در جدول 8 نشان داده شده است. همانگونه که از جدول استنباط می‌شود، نمونه a که دارای گروه GMO است استحکام خمشی بزرگتری داشت به دو نمونه مرجع دیگر دارد. از طرفی، با افزودنی تاکل به نمونه‌های مرجع استحکام خمشی نمونه به طور قابل ملاحظه‌ای افزایش جذب آب در نمونه‌های شامل تاکل نسبت به دیگر

مطالعه تأثیر افزودن ماده تاکل به ترکیب انگوب کاشی سرامیکی بر میزان جذب آب...
تشکیل ساختار جدید از تجزیه تالک می‌تواند باعث انقباض طول، کاهش حفره‌ها، کاهش جذب آب و افزایش استحکام خمش گردد.

جدول 7- جذب آب نمونه‌های انگوب

<table>
<thead>
<tr>
<th>نمونه</th>
<th>(W_d)</th>
<th>(W_h)</th>
<th>درصد جذب آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>74.10</td>
<td>78.84</td>
<td>6.42</td>
</tr>
<tr>
<td>A</td>
<td>75.90</td>
<td>78.56</td>
<td>3.50</td>
</tr>
<tr>
<td>b</td>
<td>74.87</td>
<td>83.01</td>
<td>7.99</td>
</tr>
<tr>
<td>B</td>
<td>75.78</td>
<td>78.90</td>
<td>4.12</td>
</tr>
<tr>
<td>c</td>
<td>75.37</td>
<td>85.33</td>
<td>9.5</td>
</tr>
<tr>
<td>C</td>
<td>75.64</td>
<td>79.36</td>
<td>4.92</td>
</tr>
</tbody>
</table>

جدول 8- استحکام خمشی نمونه‌های انگوب

<table>
<thead>
<tr>
<th>نمونه</th>
<th>استحکام خمیش (\text{N/cm}^2)</th>
<th>نیروی شکست (\text{N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>264.23</td>
<td>714.128</td>
</tr>
<tr>
<td>A</td>
<td>35.25</td>
<td>953.73</td>
</tr>
<tr>
<td>b</td>
<td>34.48</td>
<td>639.241</td>
</tr>
<tr>
<td>B</td>
<td>33.04</td>
<td>898.499</td>
</tr>
<tr>
<td>c</td>
<td>20.89</td>
<td>568.544</td>
</tr>
<tr>
<td>C</td>
<td>28.76</td>
<td>782.897</td>
</tr>
</tbody>
</table>

در نمونه مرجع که بیشترین جذب آب را داشته است (جدول 7) دارای کمترین زمان عبور چوب (25 دقیقه است). با افزودن تالک مدت زمان عبور چوب افزایش می‌یابد. این ترتیب حاکی از این است که افزودن تالک باعث کاهش کانال‌ها و راه‌های نفوذی در ساختار انگوب می‌شود و بنابراین زمان بیشتری طول می‌کشد تا چوب به سطح لامپ برسد. دیگر نمونه‌ها دارای جذب آب بالاتری بودند، عبور چوب در آن‌ها اندازه‌گیری نشد است.

شکل 4- طیف بازتاب نوری بر حسب طول موج برای نمونه‌ها نشان داده است. سطح زیر نمودار نمونه c به ترتیب بیشتر از نمونه مرجه و a است. همچنین مشاهده می‌شود با افزودن تالک میزان روشی نمونه‌ها کاهش یافته است.

نتایج حاصل از آزمایش عبور چوب می‌تواند بلو بر روی لاب می‌رود نمونه‌های که دارای جذب آب پایین‌تر است. زمان بیشتری طول بکشید تا میان با دنیل لامپ مشاهده شود.
آزمایش مقاومت به سایش نمونه‌ها برای کلاس سایش

(سایش سطح یا چرخش ۶۰۰ دور بر دقیقه) انجام شد و در

جدول ۱۰: آزمایش مقاومت سایش نمونه‌های انگوب

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کلاس سایش ۲</th>
<th>مورد قبول</th>
<th>رد</th>
<th>مورد قبول</th>
<th>A</th>
<th>رد</th>
<th>B</th>
<th>مورد قبول</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4- نتیجه‌گیری

نتایج مربوط به آزمایش‌های انجام شده بر روی نمونه‌ها نشان می‌دهد، با افزودن تالک در ترکیب انگو دایمل سرامیک، میزان تخلخل کاهش یافته که کاهش جذب آب و افزایش درصد انتقال نمونه‌ها را باعث شده است. به دلیل اینکه ساختار یکگانوختی تر شده، افزایش استحکام خمیشی را نیز به همراه داشته است. ولی روشی سطح نمونه‌ها کاهش یافته است. با به کار بردن فریت دلومیتی در ساختار انگو روشنی سطح نمونه‌های فانوسه است و با افزودن تالک جذب آب در قسمت بالا و جذب آب کمتری است. این بدینه همچنین نشان دهنده این است که میزان دارای تخلخل کمتر است و روشنایی انگو کاهش یافته است. با افزودن تالک به نمونه‌های مرجع، مشخص شد که به‌طور قابل ملاحظه‌ای تخلخل‌ها کاهش یافته و ساختار یکگانوختی تر شده است و مواد گهواره‌ای که در ساختار باعث انتقال آب به سطح نمونه می‌شود به‌صورت مثبت و افزایش استحکام را نیز به همراه داشته است.

5- تشکر و قدردانی

از شرکت کاشی مسعود ایران برای همکاری و تامین امکانات و تجهیزات صنعتی مورد نیاز تشکر و قدردانی می‌شود.

