بررسی تأثیر زمان آسیاب و فشار پرس در سنگ‌های مکس‌فاز نانولاژی
با روش مذاب‌خورانی واکنشی

سید علی حسینی‌زاده1، حمیدرضا بهاروندی2، ناصر احسانی3، حمزة فراتی‌راد4

1 گارشانسی ارشد دانشگاه صنعتی مالک اشتر تهران، 2 دانشیار دانشگاه صنعتی مالک اشتر تهران
3 استاد تمام دانشگاه صنعتی مالک اشتر تهران، 4 استاد دانشگاه آزاد اردبیل

* ali.hosseini.2540@gmail.com

اطلاعات مقاله:
دریافت: 15 مرداد 1397
پذیرش: 24 آذر 1397

کلمه کلیدی:
مکس‌فازهای نانولاژی، واکنشی مکس‌فازهای
پالک Ti₃SiC₂، پرس، سنگ‌های مکس‌فازهای

1 مقدمه

مکس‌فازهای نانولاژی نسبتاً جدیدی از تركیبات سطحی با
فرمول شیمیایی AXₙ (n=1,2,3,...) هستند که
یک فاز واسطه، A بک عنصر از گروه‌های 16تا18 م
Rh، Pd و Pt و به عنصر نیز C باشد. این ماده دارای ساختار
نانولاژی هستند و به دلیل همین ساختار دارای خواص
منحصر به فردی می‌باشند. این ماده به دلیل ادغام
خواص خوب سرامیک‌ها و فلزات با یکدیگر به شدت در
سنگ‌های اخیر مورد توجه قرار گرفته‌اند. Ti₃SiC₂

از معرفی‌ترین اعضای خانواده مکس‌فازهای به گفت
در سال‌های اخیر مطالعات زیادی بر روی آن انجام شده است [[1-5]] در آوری است که بالا. سختی
پایداری، داتسیتی پایین، رسالیاتی کریتیکی و جذورتی
خب، مقاومت به شکو حفرات بالا، مقاومت به
اکسیداسیون شد و قابلیت مالی کاری بسیار عالی
می‌باشد [5-8].

روش‌های متعادل برای سنگ‌های
مورد استفاده قرار

فیلتره است. یکی از روش‌هایی که در حال‌های اخیر مورد
توجه قرار گرفتن روش مذاب خورانی واکنشی (RMI) (1) می‌باشد. مزیت این روش نسبت به سایر روش‌های سرعت بالا [2]، هزینه‌های بالا [3]، سادگی فرآیند [4]، دمای کاری نسبتاً پایین [5]، قابلیت ساخت قطعات با ابعاد بزرگ [6] و اشکال پیچیده [7]، نبعدی به ابعاد نهایی [8] می‌باشد. در این روش باید با استفاده از روش‌های مختلف مانند پرس سرد، ریخت‌گری زلی، پرینت سبدی و… یک پریفورم متخلف می‌شود و سپس این پریفورم متخلف توسط مذاب Si رخته‌دهی شده تا قطعه بالک به دست بیاید [9]. اما گاهی اوقات نیازه به ساخت قطعاتی با اشکال پیچیده نیست، در این حالت بهتر است برای ساخت پریفورم متخلف از ساده‌ترین موارد تریبون و ارزان‌ترین روش ساخت پریفورم برخی روش‌های سرد استفاده شود و ویژگی مهمی که یک پریفورم در فرآیند RMI با داشته باشد این است که اولاً دارای استحکام خام قابل قبول باشد و ثانیا دارای تخلخلی مانند برای نفوذ مذاب از طریق لوله‌های مذاب بایش دو پارامتر بسیار مهمی می‌کرده است. همچنین برای انجام روش پروپورم به دسته‌های متفاوتی از ماتریس‌ها به دسته مستقیم و غیر مستقیم تکمیل می‌شوند.

یکی از موارد بسیار مهمی که در فرمولدهای انجام شده محور است مکانیزم‌های تشکیل Ti₃SiC₂ و واکنش‌هایی است که در فرآیند RMI اتفاق می‌افتد. بر اساس پژوهش‌های انجام شده، این مکانیزم‌ها به دسته مستقیم و غیر مستقیم تکمیل می‌شوند.

\[
3\text{TiC(s)} + 2\text{Si(l)} \rightarrow \text{Ti₃SiC₂(s)} + \text{Si(S)}
\]

\[
\text{3TiC(s) + Si(l) → Ti₃SiC₂(s) + C(s)}
\]

(2)

بررسی تاثیر زمان آسیاب و فشار پرس در سنتز مکس فاز ...
نتیجه گیری‌ها

1. تحقیقی نشان می‌دهد که تیسی (TiSi2) در هنگام تخمین در محیط آزمایش با مقدار گرانول شکن‌نامه‌ای بسیار کمتر از ۰.۵ میکرون حضور دارد.

2. تخمین در محیط آزمایش با مقدار گرانول شکن‌نامه‌ای بسیار کمتر از ۰.۵ میکرون حضور دارد.

3. شکل می‌شود (واکنش ۳).

\[\text{TiC(s) + 3Si(l) \rightarrow TiSi2(l) + SiC(s)} \]

4. سیس در حالت وجود کربن و واکنش ۴ اتفاق می‌افتد و تولید می‌شود، که این کربن می‌تواند از اینجا به ترکیب اضافه شده باشد و یا زاکش ۲ به وجود آمدند و یا اینکه ناشی از ترکیب بالایی [۱۱، ۱۳].

\[\text{Si(l) + C(s) \rightarrow SiC(s)} \]

5. به دلیل دمای بالایی مذابخورانی به کوره تبیوی الومینیای با دمای ۱۰۴ torr ۱۰۱ دست در دستورالعمل آن‌ها به نرخ گرامیشی ۱۰۰ C/min در دمای ۱۵۰۰ C به دست آمده است.

\[\text{Si(l) + TiSi2(l) \rightarrow TiSi2(l) + SiC(s)} \]

6. در بالاتر در حالت وجود کربن، واکنش ۶ [۱۳] و در حالت وجود آن، واکنش ۷ [۱۱] اتفاق می‌افتد و فاز تشکیل می‌شود Ti3SiC2

\[\text{2TiC(s) + TiSi2(l) \rightarrow Ti3SiC2(s) + 2Si(l)} \]

۲- فعالیت‌های تجربی

پودرهای تی‌سی (با خلقت ۹۹% و اندازه میانگین ۳-۵ µm) و یک سوزن TiC:Si=۳-۵% با تاریکی مولی ۱۵:۳۰ و ۱۲۰ در سرعت ۸ و ۱۰ RPM و بکار بردن واکنش ۵ در محیط آزمایش با مقدار گرانول شکن‌نامه‌ای بسیار کمتر از ۰.۵ میکرون حضور دارد.

\[\text{P4} \]

۱۷ دوره‌ی ۷ شماره‌ی ۳ یاپیری ۱۳۹۷

3- فعالیت‌های تجربی

پودرهای تی‌سی (با خلقت ۹۹% و اندازه میانگین ۳-۵ µm) و یک سوزن TiC:Si=۳-۵% با تاریکی مولی ۱۵:۳۰ و ۱۲۰ در سرعت ۸ و ۱۰ RPM و بکار بردن واکنش ۵ در محیط آزمایش با مقدار گرانول شکن‌نامه‌ای بسیار کمتر از ۰.۵ میکرون حضور دارد.

\[\text{P4} \]
<table>
<thead>
<tr>
<th>بخش</th>
<th>اکسیدهای آلیمینه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>1/6 MPa</td>
</tr>
<tr>
<td>P3</td>
<td>1/6 MPa</td>
</tr>
<tr>
<td>P2</td>
<td>1/6 MPa</td>
</tr>
<tr>
<td>P1</td>
<td>1/6 MPa</td>
</tr>
</tbody>
</table>

منبع: گزارش پژوهشی
پودرها الاسترزیا در نفک کن تا اکائده به TiC موجود در پیش‌سازه را در واکنش دهیل سازه. اگر زمان آسیب خیلی زیاد شود، اندماز ذرات پودر ریز شده و نرخ واکنش افزایش یپدا می‌کند. اما به شکل مشکل اساسی این مسیت وجود دارد. زمان آسیب خیلی می‌بایست شدن ناحیه باز مذاب‌کرنشین را به همان‌کمک زمان‌های افزایش یپدا می‌کند و آن هم به‌نحوی می‌باشد که لوله‌های مونه‌سی است: یک خریده‌ای هم که واکنش شود به اکائده پودرها نه اگر بزرگ بانده که شروع کاهش یابد و نه باید واکنش‌های که لوله‌های مونه‌سی بسته شود. لازم به ذکر است که در این پژوهش از جسب استفاده نشد. زیرا باعث ایجاد کربن باقی مانده در نمونه شده و در اثر واکنش با Si مذاب، ناخالصی TiC تولید می‌شود.

به شکل 1 ارسال شده M6 تا M1 است. شکل 2 نیز نمودار تغییرات درصد فازی نمونه‌های TiC افزایش که فاز TiC حذف شده است. افزایش مقدار نشان می‌دهد که واکنش میان پودرهای Si و ماده به‌نحوی اتاق‌نشده که احتمالاً ناشی از مجود شدن تخلخل‌ها است. حذف کامل Si و ماده به‌نحوی اتاق‌نشده که در نمونه TiC نیز می‌تواند به همین دلیل باشد. البته به‌طور که هیچ‌کدام سردرگم در داخل پیش‌سازه وجود نخواهد داشت تا کربن واکنش داده که کاهش یافته در این نمونه وجود دارد اما از اینجا که مقدار آن کمتر از حد است مشاهده نشده است [11]; و اما در TiC شکل 1-5 مشاهده می‌شود که در نمونه TiC مشاهده‌ای به‌طور کاملاً تبدیل شده و مقدار‌های TiC به‌دست‌آورده افزایش مقدار‌های TiC زیرا در نظر گرفته و اضافه افزایش در Si نیز مشاهده می‌شود که در این نمونه به‌دست‌آورده افزایش مقدار‌های TiC زیرا در نظر گرفته و اضافه افزایش
در ان پخش شود. همانطور که در شکل ۱- ه و می‌شود با افزایش بست کاهش زمان آسیاب در نمونه‌های M5 و M6، مقدار فاز Ti₃SiC₂ کاهش یدا کرده و دوباره TiC ظاهر شده و شدت آن افزایش یافته است. در فاصله‌ای زیر شده با توجه به روی نمونه‌های قبیل احتمالاً به دلیل ریز شدن بیش از حد اندما پودرها و مسند شدن تخلخل‌ها و Ti₃SiC₂ فاز M4 می‌توان در نمونه‌هایهای مند. با افزایش در نمونه‌های الکتریکی لوله‌ای در نمونه‌های با حجمی ۱۵ دایره، ۳۰ دایره، ۴۵ دایره، ۶۰ دایره، ۹۰ دایره، ۱۲۰ دایره آسیاب شدهاند.

ارائه شده در بخش مکانیزم‌های تشکیل Ti₃SiC₂ و وجود انجام‌بندی بوده و باید تهیه به دنبال کاهش مقدار از باشیمی؛ بنابراین. در ان پخش و اندازه تخلخل شده و نرخ و افزایش میزان زمان بوده و هم تخلخل‌ها به اندازه‌ای به دیده می‌کنند که میزان نفوذ کنده و

شکل ۱ - الگوی پرایش اشعه X نمونه‌های 3TiC/0.3Si نمونه‌های M₅ که به مدت (الف) ۱۵ دایره، (ب) ۳۰ دایره، (ج) ۴۵ دایره، (د) ۶۰ دایره، (ه) ۹۰ دایره که به مدت

شکل ۲ - نمودار تغییرات درصد فازی نمونه‌های M₆ و M₇ تا M₁
مشکل ۳-الف، ب و ج به ترتیب تصویر میکروسکوپ الکترونی روبشی (FE-SEM) نمونه‌های M1، M2 و M4 ثبت شده است. را نشان می‌دهد. همانطور که مشاهده می‌شود مقدار آن در آنتیز شناسایی مشاهده است. در این نمونه‌ها فاز روشن SiC، فاز خاکستری TiC، Ti₃SiC₂ و فاز ترکیبی TiC، Ti₃SiC₂ و SiC مشاهده است.

شکل ۴- نمونه‌های M1، M2 و (ج) FE-SEM

مشکل ۴ نمونه‌های M1، M2 و (ج) FE-SEM است. به طوری که هر چه واکنش‌ها کامل تر انجام شود و مواد اولیه به طور کامل مصرف شود و به محصول تبدیل شود نمونه فشردهتری به دست خواهد آمد. این مسئله از مقایسه شکل ۴ و تغییرات در شکل ۳ مشخص می‌شود. به جز نمونه M1، در سایر نمونه‌ها هر چه میزان بله‌مانده TiC با افزایش میزان
بررسی تأثیر زمان اسباب و فشار پروس در سنتز مکس‌فاز ...

افزایش یافته دانشی نسبی کاهش یافته است به طوری که نمونه M3 با رشد TiC به صورت واکنش نکرد و دانشی نسبی است زیرا TiC دانشی نسبی نموده خام در آن باید مانده است. نمونه M4 که موجود در نمونه خام مانده کاملاً واکنش دارد و به محصول تبدیل شده است درایی بیشترین دانشی نسبی است. در نمونه M1 نیز که مقدار دانشی نسبی آن کمی با این است عوامل متعددی مانند سایر فاز‌های تولید شده

![شکل 4- نمودار تغییرات دانشی نسبی، سختی عملي و سختی تئوري نمونه‌های M6 تا M1](image)

به طور کلی سختی یک نمونه به دو عامل نوع فاز و تخلخل‌های موجود در نمونه واکنش اد و تغییرات آن تابع برایندی آن از این دو عامل می‌باشد. شکل 4 تغییرات سختی برای نمونه‌های M6 تا M1 می‌باشد که با استفاده از دستگاه سختی ناحیه‌گر یک سختی تئوری آنها که با استفاده از قانون مخلوط‌ها محاسبه شده را نشان می‌دهد.

همانطور که مشاهده می‌شود تغییرات سختی تئوری و عملی کاملاً با یکدیگر مطابقت دارند؛ اما اختلاف میان آنها
نمودارهای موجود در شکل ۴ مشخص می‌شود که افزایش سختی در نمودار نتیجه بیشتری از آن چیزی است که در نمودار عملی اتفاق افتاده که ناشی از عامل مختلف دانشی است.

در شکل ۵ نمودار نتیجه باید نشان دهد که مقدار افزایش سختی کمتر شده است.

دانش‌های را با نیز مشاهده کرد. دانش‌های بعد از نوع فازها، دومنی عاملی است که می‌تواند بر روی سختی یک نمونه تأثیر بگذارد باشد، درواقع برآیند دو عامل فاز و دانش‌های تعیین کننده مقدار سختی می‌باشد. به‌طوری که گاهی اوقات این برآیند به نفع عامل فاز و گاهی اوقات به نفع عامل دانش‌های است اما به‌طور جهانی به عامل عامل و دانش‌های تعیین کننده مقدار سختی افزایش یافته اما

شکل ۶ نمودار نتیجه باید نشان دهد که در اینجا برای و نفع عامل فاز به‌طوری که با توجه به شکل سختی نتیجه کاهش یافته، بنیو نفوذ ارایه‌ای است که سختی به‌صورت کمی کاهش یابد کن و عامل دانش‌های نیز نتوانسته بر مقدار آن علی کنندرتیجه سختی کمی کاهش یافته است و یا از نمونه M3 به دانش‌های کاهش یافته اما سختی افزایش یافته اما، در نظر گرفتن

![نمودار نتیجه](https://example.com/image.png)

شکل ۵ نمودار تغییرات دانش‌های نسبی، مدول پانگ عمیل و مدول پانگ نتیجه نمونه‌ای M1 تا M6

همان‌طور که در نمودار نتیجه نسیده مدل پانگ به سرعت صوت نمونه وابسته به وسعت دو عامل تموم به نابنده و سرعت صوت تنیز به دو عامل تموم به نابنده

شکل ۶ تغییرات مدول پانگ نتیجه، علمی و دانش‌های نسبی نمونه‌ای M6 که دارای زمان‌های آسیب مختلفی M1 تا M6

دوره ۷ شماره ۳ یازدهم ۱۳۹۷
نوع فاز و تخلخل‌های موجود در نمونه وابسته است و تغییرات آن تابع براین‌دی از این دو عامل می‌باشد. نوع فاز یک عامل ذایل بوده و سورعت صوت در هر فازی یک مقدار مشخص دارد و تخلخل‌های موجود در نمونه نیز باعث کاهش سرعت صوت می‌شوند. در شکل 5 تغییرات مدول یانگ تئوری که با استفاده از قانون مخلوط‌ها محاسبه شده (مدول یانگ TiSi2، Ti3SiC2 و TiC) به ترتیب

\[24 \] \[1397 \] \[600 \] \[450 \] \[150 \] \[250 \] \[150 \]

در کار تغییرات مدول یانگ علی‌که با استفاده از دستگاه شیمیایی فشار فولاد اندوزه‌گیری شده ارائه شده است. همانطور که مشاهده می‌شود، مدول یانگ Ti3SiC2، TiSi2 و SiC در نمونه‌های کاهشی

\[24 \] \[1397 \] \[600 \] \[450 \] \[150 \] \[250 \] \[150 \]

وتغییرات مدول یانگ بایق و عملی سایر نمونه‌ها با یکدیگر مناسب است، یعنی در هر دو نمونه کاهش و افزایش مدول هموارا است.

\[24 \] \[1397 \] \[600 \] \[450 \] \[150 \] \[250 \] \[150 \]

کاهش زیاد دانسته‌نسبی با افزایش تخلخل موجود در این نمونه

\[24 \] \[1397 \] \[600 \] \[450 \] \[150 \] \[250 \] \[150 \]

می‌باشد.

\[24 \] \[1397 \] \[600 \] \[450 \] \[150 \] \[250 \] \[150 \]

۲-۳- فشار پرس

فشار پرس در فرآیند منابع‌خوراچی از دو جنبه حائز همیت است. اول استفاده‌کننده نمونه و دوم بسته‌بندی نمونه تخلخل‌ها. اگر فشار پرس کلی به نمایش گذاشته، تخلخل‌ها با سرعت بوده اما از طرفی استفاده‌کننده نمونه کاهش می‌یابد که بروی کلیت نمونه نهایی تاثیر منفی بهداشت گذاشته‌ای. از طرفی اگر فشار پرس بیشتر شود، استفاده‌کننده نمونه کاهشی و نمونه با دقت ابتدا بیشتری تولید می‌شود اما تخلخل‌ها به‌سختی و فرآیند منابع‌خوراچی به‌طور کامل انجام نخواهد شد. درنتیجه پایین‌تر بودن سختی از فشار دست پیدا کرد.

\[24 \] \[1397 \] \[600 \] \[450 \] \[150 \] \[250 \] \[150 \]

تاره‌های دو عامل استفاده‌کننده نمونه و تخلخل در کنار یکدیگر...
شکل 8- تصویر میکروسکوب الکترونی روبشی (FE-SEM) نمونه P1 را نشان می‌دهد. تصویر میکروسکوب الکترونی M4 روبشی نمونه P2 که در واقع همان نمونه 4 (FE-SEM) است نیز در شکل 4- ج ارائه شده است. از مقایسه تصویر میکروسکوب الکترونی و آنالیز XRD نمونه P1 مشخص است که در این نمونه نیز مانند نمونه P2 مقدار کمی TiC وجود دارد که توسط آنالیز XRD شناسایی شده است.

شکل 6- الگوی برآش اشعه X نمونه‌های P1- P4

شکل 7- نمودار تغییرات درصد فازی نمونه‌های P1 تا P4

شکل 8- تصویر FE-SEM نمونه P1
شکل ۱۰- نمودار تغییرات دانسیته نسبی، مدول یانگ عمیق و مدول یانگ تناوری نمونه‌های P1 تا P4

شکل ۹- نمودار تغییرات سختی تناوری، علی و دانسیته نسبی نمونه‌های P1 تا P4 با فشارهای بسیار مختلف را در کنار هم نشان می‌دهد. هر چند نمونه‌های با فشار بسیار بیشتری تولید شده باشد در نهایت نمونه‌های متراکمتر و با دانسیته نسبی بیشتری به دست خواهد آمد که این مسئله در شکل ۹ قابل مشاهده می‌باشد. تغییرات سختی نیز هماطور که قبلاً بحث شد به دو عامل دانسیته و سختی تناوری وابسته است. در این شکل، به جز نمونه P3 تغییرات سختی تناوری و عملی سایر نمونه‌ها با یکدیگر مطابقت دارد و مقایسه نمودارهای مشخص می‌کند که کاهش سختی نمونه P3 به علت کاهش دانسیته نسبی آن است.

شکل ۹- نمودار تغییرات سختی نسبی، مدول یانگ عمیق و سختی تناوری نمونه‌های P1 تا P4.

شکل ۱۰- نمودار تغییرات دانسیته نسبی، مدول یانگ عمیق و مدول یانگ تناوری نمونه‌های P1 تا P4.
4- نتیجه گیری

از نتایج به دست آمده از این پژوهش مشخص شد که در تهیه پریفوئرم با روی بر پرس سرد دو پارامتر زمان اسیاب و فشار بر پرس به شدت تاثیرگذار هستند. مشخص شد که دقیقاً پهترين زمان اسیاب است به طوریکه هم اختلاف Si پودرها با یکدیگر به خوبی انجام شده و هم منابع Si توانسته است که به داخل پریفوئرم نفوذ کند و درصد مکس قبل قبایل را ایجاد کند. پهترين فشار بر پرس تازا و پایین با 400 میلیپسیو نفوذ پریفوئرم از استحکام خام مناسب برخورد ناپذیر و هم منابع Si توانسته به داخل پریفوئرم نفوذ کند.

مراجع

