ساخت غشایی سرامیکی ارزان قیمت جهت کاهش ذرات جامد محلول در آب

محمد فتیان خشتی، مجتبی سعی سقدی، علی پسند

1 گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی شریعتی

2 گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی قوچان

*mojtabasaei@qiet.ac.ir

اطلاعات مقاله:

دریافت: 24 آبان 1397
پذیرش: 2 بهمن 1397

کلید واژه:

شیمی سرامیکی، مخلوط، تصفیه

آب، تصفیه راکتی

1- مقدمه

اگرچه دوسم سطح زمین یوشیده از آب است، فقط سه درصد از آن اب شیرین است و دوسم از آب شیرین موجود هم غیر قابل دسترس است. می‌توان نشان داد که بیش‌ترین گونه‌ها مناسب رود آب برای ادامه پیشرفت و بهبود انتخابات مخاطب‌ها در ابعاد میکروترمی باکتری‌ها (باکتری‌های آن که در آب بهره مناسب کوچکتر از تانوستر (یون‌ها حل شده) در آن می‌باشند)

کارآمدی روش‌های غشایی مسی نانوتولراتاسیون، اولتراتولراتاسیون، میکروفلاترسیون و اسپز مکروسیون در تصفیه آب در بخش‌های مختلف صنعت مانند بهره آب اتاقی و تصویب به دسته‌ی اسباب مثبت بهبود شده است.

غشایی سرامیکی دسته‌ای از انواع غشایی مصنوعی هستند که از ترکیبات معدنی مانند آلومینیوم، تین، نیکل، اکسید‌های زیرکوئیوم، سیلیکا و… ساخته می‌شوند [2] و دارای خواص

1 Total Dissolved Solids
ساخت غشاهای سرامیکی ارزان قیمت جهت کاهش درات جامد محلول در آب

بهتر از نظر حرارتی، شیمیایی و پایداری مکانیکی (مقاومت در پرای تخریب باکتریایی) نسبت به غشاهای آلی هستند [3]. این غشاه نسبت به نوع پلیمری (خصوصا جهت تصفیه آب و اسکاب) از لحاظ قیمت نیز قابل رقابت بوده و درایی یک تانسیل قوی جهت تصفیه آب‌های آشامیدنی و کشاورزی می‌باشد. امروزه غشاهای سرامیکی به طور موثر آموزی در گسترده وسیعی از صنایع مانند صنایع غذایی و نوشیدنی، لبنیات، دارو، بیوتکنولوژی، شیمی وپتروشیمی، نیمه‌هادی‌ها و دیگر میکروالکترونیک‌ها استفاده می‌شود. نمونه‌های تولید سری دسته‌بندی معمولی مانند nanovation، Hyflux، Pall، Argonide سرامیکی تجاری خود را جهت استفاده در سیستم‌های تصفیه آب و سپاس به پزشکه موطن‌دان [4-6] برخی از خواص مهم غشاها عبارتند از: اندازه جفرات غشا، توزیع

شکل 1 - دستگاه تست غشا
جهت ساخت نمونه‌های سرامیکی متخلف است، جهت اطمینان از آب بند بودن سیستم و همچنین تست فشار سنج‌ها در حال عدم حضور فیلتر سرامیکی، یک
مسیر مستقیم با انتها بسته تغییر شد هر دو فشارسنج عدید
ثبت را نشان داده که یک عیب بودن سیستم را تصدیق کرد.
برای تایمی آب مورد نیاز از یک مخزن ۲۰ لتری استفاده شد که
حاوا آب با سختی بالا بوده و همچنین برای تایمی فشار مورد
نیاز از یک پمپ با توان ۷۵KW / ۳۷۵۰۰ بحره شد محل
قرارگیری فیلترهای در جای بین دو فشارسنج تغییر شد.

۲- ساخت سرامیکی متخلف:
در ساخت غشا از مواد اولیه ساده و ارزان در دسترس استفاده
شد است که در ادامه به آن‌ها اشاره می‌شود. با توجه به
نتایج بدست آمده به تدریج موادی مانند خاک ار جهت
کارایی بیشتر غشا به آن افزوده یا از آن کم شده است.

![شکل ۳: نمونه دمای کوره بر حسب زمان](image)

روش قبل تحت فشار حدود ۴۰ مگاباسکال قرص های تهیه
شد قرصها در ۱۰۰ درجه سانتی‌گراد به مدت ۲۴ ساعت
خشک شدند و سپس تحت عملیات سیستم‌بندی قرار گرفتند.
خلاصه معرفی این نمونه‌ها در جدول ۱ امده است.

بدین منظور نمونه‌های با ترکیب آلومینیا (۴۳ درصد وزنی)،
کالیاون (۱۲ درصد) و فلسفیار (۳۴ درصد) تهیه شد. این ترکیب
به همراه مقادیر مختلف صفر، ۵ و ۱۰ درصد وزنی خاک ار
به منظور ایجاد تخلخل به خوبی مخلوط شدند. سپس به

旅游资源
جدول 1- معرفی نمونه‌های تهیه شده در این مقاله

<table>
<thead>
<tr>
<th>توصیفات</th>
<th>ضخامت (mm)</th>
<th>پودر سرامیک</th>
<th>نمونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاولون 50 درصد وزنی</td>
<td>40-15</td>
<td>گروه یک</td>
<td>فلزسپار</td>
</tr>
<tr>
<td>فلزسپار 25 درصد وزنی</td>
<td></td>
<td>سبیس 25 درصد وزنی</td>
<td></td>
</tr>
</tbody>
</table>

| ترکیب با 10 درصد وزنی خاک اره | | گروه دو | کاولون 40 درصد وزنی |
| ترکیب با 5 درصد وزنی خاک اره |

جهت افزایش استحکام نمونه‌های تهیه شده با استفاده از کمی کمک ذوب مناسب (4 درصد فلزسپار) و همچنین افزایش دمای پخت نمونه‌های آلومینیوم با استحکام بالا تهیه شد که در شکل 3 نشان داده شده است (عملیات سیترینگ در دمای ۱۵۷۰ درجه سانتی‌گراد، به مدت ۲ ساعت و سرعت حرارت دهی ۳ درجه بر دقیقه) هم‌اکنون که در شکل ۳ مشخص شده است نمونه‌ها در دودسته

1. تخلخل کم (3wp) و زیاد (6wp) دردای ۵ درصد خاک اره
2. تهیه شده با ضخامت‌های متغیر، نمونه‌ها ضخامت کم و تخلخل زیاد، به علت رطوبت کم یا بیش از پرس، استحکام کمی داشت و قابل استفاده نبود. بقیه نمونه‌ها تهیه شدند و قابل استفاده بودند و در ادامه کار مورد استفاده قرار گرفتند.

![شکل 3- نمونه‌های آلف با تخلخل کم (3wp) و ب تخلخل زیاد (6wp)](image-url)
در ادامه سعی شد به دست آوردن تخلخل مناسب در غشاها سرامیکی پایه آلومینیا در کنار استحکام بالای آنها. بنابراین آب را به کمک مواد افزودنی پیشنهاد مطابق کاهش داد از مجموع قرص‌های بالا فقط نمونه متراکم بدون خاک اره مقدار سختی را به صورت قابل توجهی تغییر داد. قرص‌های بدست آمده در سیستم تصفیه آب که برای انجام تست‌ها تعبیه شده است جای گذاشته شدند و مورد آزمایش قرار گرفتند. غشاها سری SW0 (بدون حضور خاک اره) در دو ضخامت 10 و 20 میلی‌متر تولید شدند که در شکل ۳ نشان داده شده‌اند.

شکل ۳- نمونه‌های بدون خاک اره از تولید می‌تواند به دست آید از غشا با ضخامت ۲۰ میلی‌متر استفاده شود. محلول (پساب) اولیه مورد استفاده دارای TDS ۹۵۰ بود که پس از تصفیه به مقدار ۴۰۰ ppm کاهش یافت. با استفاده از روی سنجش وزن و زمان (اندازه‌گیری وزن آب خروجی از غشا در مدت زمان مشخص و تبدیل آن به دبی) با استفاده از جگالی آب میزان آب عبوری (دبی) از غشا مورد نظر در فشار ۱ بار مقدار ۹۵ سی سی در ساعت می‌باشد. برای تست غشا با ضخامت ۲۰ میلی‌متر از محلول با میزان ۴۰۰ ppm TDS استفاده شد که پس از تصفیه به مقدار ۱۴۵۰ ppm از راست. دبی‌این غشا مطابق روش قابل اندازه‌گیری و مقدار ۱۳۰ سی سی در ساعت بدست آمد. در اینجا کاهش TDS میزان ۲۰۰ ppm TDS دارای مقدار ۱۴۰ سی سی در ساعت نشان داده شده است. برای روش گردشی در به سرعت ۳۰ میلی‌متر میانگین سطح مورد تسامح با حاصل که به قطر ۳ سانتی‌متر می‌باشد (سطح مورد تسامح با حاصل که به پوشانده نشده است) برابر با ۲۸ سانتی‌متر می‌باشد، در
ساخت غشاهای سرامیکی ارزان قیمت جهت کاهش درات جامد محلول در آب

حالی که در یک استوانه به طول ۲۰ سانتی‌متر و به قطر ۱۰ سانتی‌متر سطح تسمس موتر برابر با ۱/۲۵۶ واحد متر مربع که دیل‌های به بیش از ۴ لیتر در ساعت افزایش یافت.

جدول ۳- نتایج حاصل از تست غشاهای بدون محتوای خاک اره

<table>
<thead>
<tr>
<th>ضخامت غشا (mm)</th>
<th>مواد جامد محلول اولیه (PPM)</th>
<th>مواد جامد محلول نهایی (PPM)</th>
<th>دیب حجمی (cc/hr)</th>
<th>اختلاف فشار (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>۲۰۰۰</td>
<td>۱۴۵۰</td>
<td>۱۱۲۰</td>
<td>۱</td>
</tr>
<tr>
<td>۲۰</td>
<td>۹۵۰</td>
<td>۴۰۰</td>
<td>۱۰۵</td>
<td>۱</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۲۰۰</td>
<td>۳۲۰</td>
<td>۴۵</td>
<td>۱</td>
</tr>
</tbody>
</table>

اندازه‌گیری و وجود نداشت (پکت‌وخت نیودن جریان عبوری از سخت سنج).

وقتی از نمونه‌های سرامیک متخلف مشاهده شد که میزان دیل عبوری از سرامیک متخلف بسیار کم می‌باشد بنا بر شکل ۵ ناخالصی‌ها به صورت رنگ سیاه روی غشا قرار گرفته‌اند. نمونه‌ها از لحاظ جداسازی بسیار مفید بوده‌اند ولی عبور داده با فشار ۱ bar توسط بمب بسیار کم می‌باشد که قابلیت شکل ۵- ناخالصی‌های رنگ روی غشا

۳- نتایج و بحث

در تست‌های انجام شده از نمونه‌های سرامیک متخلف مشاهده شد که میزان دیل عبوری از سرامیک متخلف بسیار کم می‌باشد. بنا بر شکل ۵ ناخالصی‌ها به صورت رنگ سیاه روی غشا قرار گرفته‌اند. نمونه‌ها از لحاظ جداسازی بسیار مفید بوده‌اند ولی عبور داده با فشار ۱ bar توسط بمب بسیار کم می‌باشد که قابلیت
در آزمایشی که بر روی قرص‌های SW0 انجام شد نتایج نشان داد که بدون افزودن خاک ار از اصلاح بیشتری جذب غشا می‌شود و همچنین با افزایش ضخامت غشا می‌توان محلول‌های با سختی بالا را به محلول‌های با سختی مطلوب رساند.

دیدگاه کلی درباره خاک ار بدن صورت است که وجود خاک ار علاوه بر انرژی تخلخل سبب ایجاد مسیرهایی برای عبور آب می‌شود که باعث می‌شود سختی آب تنها به مقدار کمی کاهش پیدا کند.

شکل 6- غشا‌های بالا و پایین بعد از تصفیه آب

شکل 7- نمودار میزان کاهش TDS براساس ضخامت غشا در نمونه‌های بدون خاک ار
نتایج این آزمایش نشان می‌دهد که غشاهای سرامیکی می‌توانند با استفاده از سیستم بسیار ساده و به‌طور کاربردی در صنعت تصفیه آب و پساب با استفاده چون توانسته‌اند آب را به مقدار چشم‌گیری کاهش دهند. غشا با ضخامت ۲۰ میلی‌متر ۴۰۰ ppm آب را از TDS مقدار ۱۰۰۰ ppm یا کاهش ۳۷ واحده پیدا کرد.

طبق نتایج آزمایش می‌توان بدون استفاده از خاک اهر بیای افزایش تخلیه مقدار پایایی تری از TDS رسید و لی‌ مشکلی که در این بین ایجاد شد کاهش دی‌پای آب خروجی بود که افزایش تعداد مالوز ها به صورت مواردی در تمونه‌های صنعتی و نیمه صنعتی می‌تواند بدون آب تصفیه شده را افزایش داده TDS خروجی مناسب آب شرب می‌باشد و حتی می‌توان با افزایش ضخامت و استفاده از تعداد بیشتری از مالوز‌ها به صورت سری خلوص آب مورد استفاده را نیز بهبود بخشید.

مراجع
مهندسی و صنایع، محمد، "ساخت یک نمونه غشا سرامیکی نیمه تراوا برای کاهش کل املاح محلول در آب" پانزدهمین کنگره ملی مهندسی شیمی ایران، ۱۳۹۶.