بررسی خواص الکتریکی و مقاومت خورشکی پوشش TiN اعمال شده به روش کند و باش ری صفحات دو قطعی تیناتیومی مورد استفاده در پیل سوختی پلیمری

مجید محمدی، مهدی کودرژی، رضا طاهریان
دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی شاهد
* majid.mohammadi@shahroodut.ac.ir

اطلاعات مقاله:
دریافت: ۱۳۹۷ ژانویه ۲۹
پذیرش: ۱۳۹۷ بهمن ۲۸

کلید واژه:
سطح دوقطعی کانوپی پوشش تیناتیوم، مقاومت تماسی مقاومت خورشکی (Grazing incident XRD)

چکیده:
در این تحقیق تأثیر تغییر پوشش تیناتیوم با استفاده از روش کند و باش روی خواص صفحات دو قطعی تیناتیومی مورد استفاده در پیل سوختی پلیمری و بررسی قرار گرفته. عملیات پوشش دهنی با استفاده از هدف تیناتیوم خالص در اتصال فاز اکترن و تیناتیوم با خلوص بالای انجام نشده و پوشش تیرید تیناتیوم با ضخامت‌های مختلف با کشش مانند کند ایجاد گردید. شناسایی فرآیند شکل گرفتن در پوشش با استفاده از روشهای ایکس خراشان (X-ray diffraction) و تیتانیوم و تیتانیوم اکترن موجود در محلول نیم مولار پی و در محدوده ۴۰ تا ۷۰ درجه است. مقاومت تماسی (Interfacial contact resistance) بررسی مقاومت تماسی تیتانیوم با استفاده از اکترن و تیناتیوم در صفحات دو قطعی تیناتیومی با استفاده از تیتانیوم نوع تیتانیوم که با چندگی تغییر شکل در پوشش به بهبود مقاومت TiN کاهش یافت. بررسی نتایج پلاژیورسین نشان داد که اعمال پوشش TiN و تیتانیوم در صفحات دو قطعی تیناتیومی که با استفاده از تیتانیوم که با چندگی تغییر شکل در پوشش به بهبود مقاومت TiN کاهش یافت. بررسی نتایج پلاژیورسین نشان داد که اعمال پوشش TiN و تیتانیوم در صفحات دو قطعی تیناتیومی که با استفاده از تیتانیوم که با چندگی تغییر شکل در پوشش به بهبود مقاومت TiN کاهش یافت. بررسی نتایج پلاژیورسین نشان داد که اعمال پوشش TiN و تیتانیوم در صفحات دو قطعی تیناتیومی که با استفاده از تیتانیوم که با چندگی تغییر شکل در پوشش به بهبود مقاومت TiN کاهش یافت.

۱- مقدمه
کاهش ذخیره سوخته‌های فسیلی و سایر تبادل انرژی از مصرف این نوع سوخته‌های نورسوز به عنوان یک چالش جدی در...
سومیه‌ها فسیلی مطرح می‌باشد (۱). بدل سومیه بر فن آوری بسیار مهم در کاربردهای بالقوه و گسترش مانند منابع برق کوکه، تجهیزات کمکی انزیم در صنایع حمل و نقل و به عنوان منبع اصلی انرژی مطرح می‌باشد (۲).

مهمترین مزیت بدل سومیه آلاینگی بسیار کمتر آنها در مقایسه با سومیه‌های فسیلی می‌باشد، انواع مختلف پیل سومیه بر اساس نوع الکترولیت و دمای کاری دسته‌بندی می‌شوند. این میان بین پیل سومیه با الکترولیت بلیمری (PEFC) (۱) که با نام پیل های سومیه با غشای بلیمری (PEMFC) (۲)، نیز شناخته می‌شوند. پیل های با دمای کاری پایین (معمولاً کمتر از ۱۰۰ درجه سانتی‌گراد) به عنوان پیل‌های خاص می‌باشند. پیل‌های دیگر پایین کاری، راه اندازی سریع و قابل حمل بودن، کاربرد این دسته در میکرو پیل‌ها و در صنعت حمل و نقل بسیار مطرح می‌باشد (۲ و ۳).

اولیات مختلف پیل سومیه بلیمری شامل، غشای بلیمری‌هایی صفحات دو فضای و لایه عبور ناگ غاز می‌باشد که صفحات دو فضای به عنوان یکی از اجزای کلیدی سازند، پیل‌های سومیه مطرح می‌باشد. مهمترین نقش این صفحات ایجاد اتصال الکترولیکی بین دو پیل ها، فراهم کردن بستر مناسب جهت جریان گازهای واکنشگر روز سطح آن و کنار خارج کردن محصولات واکنش از پیل می‌باشد (۳). این صفحات ابتدا از گرافیت با دانشی باحال ساخته می‌شوند، اما این توجه به شکل ذهنی پایین و صفحات مکاتیب‌های مطرح گرافیت، در سال‌های اخیر توجه زبایا روي برخی از فلزات و آلیاژه به منظور ساخت صفحات دو

۱ Polymer Exchange Fuel Cell
۲ Proton Exchange Membrane Fuel Cell
به توقف رشد سوئی تيتانیوم و بسته شدن حفرات و نواعیت این نوع ساختار گردد. مسعود شدن عیوب موجود در لاپی TIn منجر به بهبود مقاومت خوردگی پوشش‌های دولابی CrN،

رو یا همکاران [9] در پژوهشی ای اعمال پوشش‌های فردی مقاومت خوردگی و مقاومت سطحی تمامی صفحات بدیل حاوی بودن عنصری چون آهن و نیکل اکسیدسیون‌باف و مقاومت الکتریکی بالا، از نقطه نظر مقاومت سطحی تمامی براز کاربرد در پیل مناسب می‌باشد. نمونه‌های پوشش در نتیجه کروم با توجه به تأثیر در گیره لایه سطحی غفل، دادای مقاومت تمامی کمتری نسبت به نمونه‌های بدون پوشش می‌باشد.

اغلب پژوهش‌های صورت‌گرفته در این زمینه بر روی زیر‌لاترایی از جنس خوردگی زنگ می‌باشد که از نظر قیمت در حال حاضر بهترین ماده برای استفاده در نیمه‌سواستی بهترین جایگاه و بهترین آرایه‌ای آن‌ها به عنوان بزرگ‌ترین نقطه ضعف. به منظور استفاده در پیل‌های مطرح بوده و همواره سه بر چاپ زنگ فنار در چگالی پایین و خواص مطلوب مورد نظر محققی بوده است. در این پژوهش با توجه به چگالی پایین فلز تیتانیوم و همچنین خواص منحصر به فرد تیتانیوم‌زیر از تیتانیوم به عنوان زیر‌لاپی ساخت صفحات دو قطعی استفاده گردد. گرچه تشکیل لایه عقبی اکسید تیتانیوم در محیط کاری پیل منجر به بهبود خواص خوردگی این فلز می‌شود ولی تشکیل

اکسیدی غیر فعال و هدایت الکتریکی بالای طلا، صفحات

do قطعی تولید شده دارای مقاومت به خوردگی عالی و مقاومت سطحی تمامی پایبندی می‌باشد. مقاومت تمامی صفحات تیتانیوم پوشش شده با طلا و صفحات گرافیتی در فشارهای پایین نیز بی‌اکنون بهبود نسبتاً زیادی در هدایت الکتریکی صفحات تیتانیوم/طلا می‌پاشد. از مزایای این نوع پوشش‌دهی می‌توان ایمنی استفاده از ورق‌های با ضخامت کمتر برای استفاده در صفحات دو قطعی، کاهش وزن، بهبود خواص هدایت حرارتی الکتریکی و مقاومت مکانیکی

صفحه دو قطعی را نام برده.

دور و همکاران در سال 2011 [7]، در پژوهشی تأکید ضخامت سه نوع پوشش سرامیکی از جنس تیتانیوم قرار دادند. همه انواع پوشش‌ها با شرایط یکسان و با روش لاشه ناشی از فاصل بخار روی زیر لایه 346 اعمال گردید. در هر سه مورد اعمال پوشش منجر به بهبود مقاومت خوردگی صفحات دو قطعی به لایه فولاد این نتیجه گرفتند و بهترین مقاومت در برای خوردگی برای نمونه پوشش داده شده با تیتانیوم چپ‌کننده به ضخامت 1 میکرومتر بسته‌ای در ضخامت‌های 0.5 و 1 میکرومتر نیز مقاومت به خوردگی پوشش ZrN نسبت به بقیه پوشش‌ها بهتر بود.

مقاومت به خوردگی پوشش نانو ساختار نیز لایه‌ای

اعمال شده به روش کند و باش روی زیر لایه آلوسیم‌نیم سری 7 و تسهیل قابل‌توجه و همکاران [8]، مورد بررسی قرار گرفت. شکل کریستالی لایه سیانیتینی در پوشش منجر
این لایه عایق به شدت روی هدایت الکتریکی صفحات دو قطعی تاثیر منفی خواهد گذاشت. جهت رفع این مشکل از روش اصلاح سطح با اعمال پوشش نیترید تیناپوی استفاده گردید. با توجه به نوع لایه و پوشش می‌توان با نفوذ ذرات نیتروزن به درون لایه نیترید تیناپوی به سطوح چسبیدنگی مناسب میان پوشش و لایه نیترید یافته که یک امر منجر به بهبود جدیدگری در شاخص مورد نیاز (خوردوگر و الکتریکی) صفحه دو قطعی ساخته شده توسط این مواد می‌گردد.

2- فعالیت‌های تجربی

در این تحقیق نمونه‌های تیناپویی گرید 2 با ضخامت 1mm و ابعاد 0.1 cm × 0.1 cm و انتخاب گردید.

ترکیب شیمیایی تیناپوی مورد استفاده در جدول شماره 1 ارائه شده است. جهت اعمال فرانز اند پوشش دهی، نمونه‌ها تحت عملیات آماده‌سازی سطحی به وسیله سپرده‌زنی قرار گرفته و در نهایت توسعه ذرات آلومینا پوشش شدند.

جدول 1- آنالیز شیمیایی لایه تیناپوی مورد استفاده (درصد وزنتی)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Ti</th>
<th>O</th>
<th>Ne</th>
<th>Fe</th>
<th>H</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد وزنتی</td>
<td>96.3</td>
<td>0.15</td>
<td>0.02</td>
<td>0.03</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

قبل از فرانز اند پوشش دهی عملیات تمیز کاری سطحی نمونه‌ها توسط اسید و اتانول، صورت گرفت و جزی‌های سطحی و مواد باقی‌مانده به صورت کاملاً از بین رفتند.

فرانز اند پوشش دهی نمونه‌ها به وسیله دستگاه کندو بانش خلاء بالا مدل 160-16 و در محدوده توانایی 21 تا 26 W انجام گرفت. خلاء محصصه برای انجام فرانز اند

4 Gas Diffusion Layer
۳- نتایج و بحث

۳-۱- ریز ساختار پوشش
نتایج آنالیز بررسی ابعاد ایکس کروی‌اندازی از پوشش‌های آیجاد با ضخامت ۴۰۰ و ۵۰۰ نانومتر در شکل شماره ۴ آزاده شده است. همانطور که ملاحظه شد، نانومتری در شکل ۲-الف در فاز TiN و Ti به ترتیب با کد Merjع ۱۹۹۷-۱۱۰۱ و PDF-۰۰-۱۱۰۱-۰۰۰۰-۰۰۰۰ آشکار شده‌اند. پیک تیتانیوم مربوط به Zیرلاژ و نیترید تیتانیوم به عنوان لایه پوشش داده شده می‌باشد. این نتایج در تطابق خوبی با پیکهای الگوی ضخامت نیترید تیتانیوم می‌باشد. بررسی شدت پیک‌های بدست آمده از شکل ۲ برای همه ضخامت‌های می‌توان به میزان کرنش‌های شدن مناسب لایه پوشش بدیل شنت مناسب یک یا یک سایر با مقیاس الگوی پوشش پوشش‌های با ضخامت nm و nm ۴۰۰ به ترتیب در شکل ۴-ب و ۴-ب مشاهده می‌گردد که با افزایش ضخامت لایه، شدت پیک مربوط به نیترید تیتانیوم افزایش می‌یابد که نشان دهنده دو عامل افزایش ضخامت ماده پوشش داده شده و بالا رفتن درجه کرنش‌گی در افزایش ضخامت لایه‌ها بدیل مطابق با قواعد شرایط و زمان‌های پوشش می‌باشد. بررسی پیکها و صفحات کرنش‌گی پوشش اینها می‌توان با ساختار کرنش‌گی مکثی نیترید تیتانیوم گام ۱ با ساختار نیک طعام یی پر یک تصور می‌کنیم که الگوی از ریز ساختار سطح مقطع پوشش‌های با ضخامت منفی، به همراه آنالیز EDS از پوشش تشکیل شده در فرآیند کنود باش در شکل شماره ۴ آزاده شده است.
شکل ۳- نتایج آنالیز پراش اشعه ایکس از پوشش‌های TiN با ضخامت‌های (ب):۳۵۰ و (ج):۶۰۰ نانومتر.

شکل ۳- تصاویر میکروسکوپ الکترونی از سطح مقطع پوشش‌های TiN در ضخامت‌های (ب):۳۵۰ و (ج):۶۰۰ نانومتر.
تخلیل و میکروذر در پوشه با ضخامت 200 نانومتر می‌باشد. در پوشه 600 نانومتری (شکل 4–ب) مقدار زیر سطح و تخلیه‌ها کاهش یافته است. رشد این پدیده در فرآیند پوشش‌دهی کندو پاش موجب به ایجاد سطح‌های زبری پایین و مقادیر کم تخلیه‌های این خصوصیات تأثیر زیادی روی خواص الکتریکی و خوردگی پوشه‌ها خواهند داشت.

3- بررسی مقاومت تماسی پوشه‌ها

مقاومت تماسی در صحاب دو قطعی از مقاومت الکتریکی با در مصرف بین صفحه فلزی و لایه نفود کاری کننده نشان می‌گیرد. مشخصه‌های سطح، تأثیر مهمی روي این نوع از مقاومت دارد. با افزایش فشار در آزمون، مقاومت تماسی سطح تامسی تغییر نمی‌کند. بسیاری از توانایی‌های یافته و منجر به افت و تثبیت می‌باشد. شکل 5 نتایج مقاومت تماسی نمونه‌های مورد تست قرار گرفته را نشان می‌دهد.

ملاحظه می‌شود که در هر سه مورد، پوشه فشرده‌تر یک‌واخت و با جنسی‌گی مناسب روز زیر لایه تیتانیوم تشکیل شده است. مکانیزم نفوذی تشکیل این نوع پوشه با توجه به بالا بودن دامای زیر لایه در هن فرآیند پوشش‌دهی، منجر به عدم تشکیل خط جداش مشخص بین پوشه و زیر لایه شده است. با توجه به اینکه پوشه شرایط پوشش‌دهی مکانیزم شکل گیری پوشه در هر سه مورد یکسان می‌باشد و ریز ساختار نسیتا پوشه‌ها حاصل گردیده است. نتایج آنالیز EDS پوشه‌ها نشان می‌دهد که منجر به تغییر هر سه زمان پوشش‌دهی، تکیه بین تیتانیوم و نیتریژن تشکیل شده است. با افزایش مدت زمان پوشش‌دهی، مقادیر عناصر تیتانیوم و نیترورژن افزایش ییدا می‌کند که این موضوع ناتوانی برمی‌گردد بسته آمده در آنالیز XRD نمونه‌های پوشه در مورد مورد.

بررسی مورفولوژی سطح پوشه‌های TiN در شکل 4 بیانگر صافی سطح مناسب به همراه مقادیر کم حفره،

شکل 4- تصاویر میکروسکوپ الکترونی از مورفولوژی پوشه TiN در ضخامت‌های الف (200 نانومتر)–ب (600 نانومتر).
بررسی خواص الکتریکی و مقاومت خوردگی پوشش TiN اعمال شده به روش کند و پاش ...

طلب مقدمه‌ای:
با افزایش فشار اعمالی و در فشارهای بالای پهن کاهش مقاومت سنگین، به‌طوری که در فشارهای بالای نانومتری کمتر از 100 N/cm² ظهور می‌کند. تغییرات به صورت تدریجی می‌باشد. کاهش مقاومت با افزایش فشار را می‌توان به افزایش سطح مقطع بین پوشش و لایه تنش‌دهی کاز (GDL) نسبت داد. در فشار

۵- تغییرات مقاومت تماسی بر حسب تغییرات فشار برای زیر لایه تیناتیوم و پوشش‌های TiN با ضخامت منفی و

با افزایش ضخامت لایه TiN مقاومت تماسی در فشار

ثبت کاهش می‌یابد. در بین نمونه‌های پوشش شده، پوشش‌های با ضخامت 100 N/cm² نانومتر دارای بالاترین مقدار

مقاومت می‌باشد به طوری که در فشار

140 N/cm² مقاومت تماسی برای نمونه بدون پوشش

97 mΩ.cm² و برای نمونه با ضخامت لایه TiN نانومتر برابر با

64 mΩ.cm² می‌باشد. گاژرونی لایه نایوسته اکسیدی

تیناتیوم با لایه سرامیکی رسانای TiN مهم‌ترین عامل

کاهش مقاومت تماسی نمونه‌های پوشش داده شده می‌باشد

[۱۰۱۲۱۳]. کمترین مقاومت تماسی برای پوشش‌های با

ضخامت 600 نانومتر ایجاد گردید. افزایش هدایت الکتریکی

با افزایش ضخامت لایه TiN می‌توان به افزایش ضخامت

حافظه بار و کاهش اثر پراکنش الکترونی در فصل

مشترک بین پوشش و لایه ناپتست داده به بیان دیگر با

کاهش ضخامت پوشش الکترونی با پشت دچار پیدا

پراکنش سطح مشترکی می‌شود و این موضوع موجب به

افزایش مقاومت تماسی پوشش‌ها می‌گردد. در لایه‌های

می‌باشد که تقریباً ۵ برای بزرگ‌تر از مقداری است که

دیپتولان آنتزی آمریکا به عنوان هدف برای مقاومت تماسی

صفحات دو قطعی تیم‌کردن می‌شود. مقاومت تماسی بالای

تیناتیوم ناشی از تشکیل لایه اکسیدی تشکیل شده در

انسفر می‌باشد [۱۱]. لایه اکسیدی تشکیل شده روی

تیناتیوم، باعث بهبود مقاومت به خوردگی صفحات می‌شود

ولی، بدلیل هدایت الکتریکی ضعیف، تأثیر نامطلوبی روی

هدايت سطح ایجاد می‌کند. بنابراین مقاومت تماسی این نوع

تیناتیوم برای کاربردهای پیل سوختی به‌نهاپی مناسب

نیست.

۱۳۹۷

دوره ۷ شماره ۴ زمستان
نمودنها، منحنی پلاژیسیون به سمت راست و بالا، نشان‌دهنده تاثیر عامل خوردگی بر تغییر مکانیک می‌دهد. در مقایسه، خوردگی نمونه‌ها افزایش و سرعت خوردگی آنها کاهش می‌یابد. می‌توان گفت رابطه‌ای مستقیمی بین مقاومت به خوردگی و ضخامت پوشش اعمال شده بر روی سطح وجود دارد. با افزایش ضخامت پوشش و افزایش فاز تیتانیوم نیترید در سطح، به علت مقاومت خوردگی ذرات بالاتر TiN نسبت به تیتانیوم، مقاومت به خوردگی افزایش می‌یابد. [16] پوشش‌های نیتریدی ایجاد شده با استفاده از چنین کنید و پاش دارای ساعتیه سنینه که عوامل ویژه‌های درون این ساختار پراکنده شده‌اند. با افزایش ضخامت پوشش احتمال منحرف شدن و استحالت ساختار سنینه افزایش یافته و مدت زمان نفوذ محلول از طریق سطح به سمت فضای مشترک افزایش می‌یابد. بنابراین، موضع نش اساسی بر بیهوده مقدار مقاومت به خوردگی پوشش‌های ضخیمتر ایفا می‌کند. [18 و 19]

نتایج آزمون پنانسل متغیر برای تیتانیوم و پوشش‌های TiN با ضخامت متغیر در نمودار شکل 6 ارائه شده است. مطلوب شکل، برای همه نمونه‌ها لاچ غیر مقام ایجاد شده و با افزایش ضخامت پوشش بر روی سطح TiN شکل 6- نمودار نتایج تست پلاژیسیون پنانسل متغیر برای زیر لایه تیتانیوم، پوشش

با ضخامت 0.000، 0.003 و 0.005 نانومتر.
بررسی خواص الکتریکی و مقاومت خوردگی پوشش TiN، اعمال شده به روش کند و پاش...
با پوشش 20 نانومتر ضخامت پوشش، خواص رسانایی نمونه افزایش یافته و به 32 در نمونه 600 نانومتری رسید.

مراجع


نوتیجه‌گیری

با اعمال پوشش نیترید تیتانیوم با ضخامت‌های متفاوت به روش کنده و پاش بر روی زیر لایه تیتانیوم و بررسی مقاومت به خوردگی، مقاومت تماسی و ریزساختار نمونه‌ها تأثیر خوب حاصل گردید:

- پوشش دهی تیتانیوم به روش کنده پاش و با هدف تیتانیوم در انسفیر گاز نیتروژن و گاز ارغوانی موجب به تشکیل لایه تیتانیوم نیترید با چسبندگی مناسب در سطح زیر لایه تیتانیوم گردید.

- پوشش TiN منجر به بهبود خواص خوردگی زیر لایه تیتانیوم گردید. با افزایش ضخامت پوشش از 200 نانومتر به 600 نانومتر، خواص خوردگی بهبود می‌یابد به طوری که چگالی جریان خوردگی از ۴/۳۹ ìA/cm² به ۶/۸ ìA/cm² گردد.

- لایه Ti/TiN به مقدار ۶۰۰ نانومتر کاهش یافته و در این شرایط پتانسیل خوردگی نیز از ۷/۱۳۴ V به ۱/۱۱۷ V کاهش یافته است.

- پوشش تیتانیوم نیترید منجر به بهبود مقاومت تماسی زیر لایه تیتانیوم گردید. مقدار مقاومت تماسی در فشار مونتاس به سوختن (۱۴۰ N/cm²) برای زیر لایه تیتانیوم ۷/۶ mΩ.cm² می‌باشد که این مقدار در نمونه
Sh. Ahangarani, M.S. Mahdipoor, Correlation between the surface characteristics and the duty cycle for the PACVD-derived TiN nanostructured films,” Surface & Coatings Technology 205 (2011) 4980–4984.


[18] M. Raoufi, Sh. Mirdamadi, F. Mahboubi,