بررسی تأثیر DMOAP با گروه دی میل اکتا دسیل آمین پروپیل بر خواص ترشندگی TMOS

حمیدرضا احمدی ۱، حمید جمالی ۲، علی نعیمی ۳

۱ گروه مهندسی مواد و منالوزی، دانشگاه فنی و مهندسی، واحد ساوه، دانشگاه آزاد اسلامی، ساوه
۲ گروه مهندسی مواد و منالوزی، دانشگاه فنی و مهندسی، واحد ساوه و تحقیقات، دانشگاه آزاد اسلامی، تهران
۳ گروه سرامیک، دانشگاه مهندسی و علوم، دانشگاه صنعتی شریف، تهران

* ahmadi@iau-saveh.ac.ir

چکیده:
در پژوهش حاضر، جهت بررسی تأثیر گروه دی میل اکتا دسیل آمین پروپیل بر ترشندگی DMOAP، پویش پیلیکای هیبریدی آلی - مصنوعی با تری‌اکسید سن - اصلی به میکرو‌ریزایی تهیه شد. سپس، انتقال‌های سل طی و اکتش فید‌لوتر (MOS) ریک شده در هم اتصال اسید (TMO), ریک تری‌اکسید سنی (3-تزری تری‌اکسید سنی) پروپیل (MOS) (DMOAP) به عنوان عامل اصلاح کننده در دمای اکتش بهره‌وری راه 確定. در بررسی چگونگی اثر گروه دی میل اکتا دسیل آمین پروپیل بر طراحی P. سنتی MeOH/TMOS مولی در حالت ۲:۱۸:۱۰ به ترتیب در نسبت مولی ۱:۱۵:۱:۱۲ به ترتیب در نسبت مولی CH3COOH، H2O انجام گرفت. مورفولوزی چهارده تهیه شد. اصلاح سیمپاتی سطح DMOAP /TMOS به ترتیب توسط میکروسکوپ الکترونی مدل میکروسکوپ الکترونی (Fe-SEM) و میکروسکوپ الکترونی اتصالی (TMOS) انجام گرفت. سپس ماده فرم میل تدیل فرابند (FT-IR) و اتصالی از همه فرآیندها به آن (AFM) انجام گرفت. بررسی خواص فیزیکی از طریق اندازه‌گیری تغییر تغییرات قطره (CA) و تغییرات مولکولی بینش DMOAP (زمین) توسط پردازش UV-VIS نشان داد که این فرآیندها دچار افزایش یافته که احتمالاً مربوط به دنستری بودن بهره‌مندی لایه‌های فعال در سطح پوشش سیلیسی در می‌باشد.

اطلاعات مقاایسه:
دریافت: ۲۸ مرداد ۱۳۹۷
پذیرش: ۲۷ فوروردین ۱۳۹۸

کلید واژه: DMOAP, TMOS, ترشندگی

هیبریدهای آلی - مصنوعی

۱ - مقدمه

نیوترون آلی، سطوح اکریلیک مصنوعی بر اساس ترکیبات آلی,
مدختل و هیبریدهای آلی - مصنوعی به صورت ساختارهایی در
مقياس میکروسپو و با اصلاح شیمیایی سطح با ساختار

۵۱
2- فعالیت‌های تجربی

در این بیانیه، ترکیب‌های مختلفی برای ترسیم ترکیب‌های وجود دارد. یکی از روش‌های مطروح ستند فرآیند مثل پپش درسته و غیره، می‌توان با استفاده از فرموله کردن تعیین کرد [۲۳].

و S. S. Latthe [۲۴] گزارش کرده که با افزایش نسبت مولی همکاریش از ۸۳ تا ۳۷۳ ترکیب میکروکسی (TMOS/ TMCS) (از صفر تا ۸۳ تری اوتی‌سیلائنز (TMOS) میکروکسی (TMCS) به عنوان اصلاح کننده سطح در کنار ترکیب‌های سیلائنز (TMOS) میکروکسی (TMCS) به عنوان اصلاح کننده ماده استفاده کرده. اگر بخواهد که زاویه پوشش‌های ترکیب TMOS/TMCS نسبت مولی بین ۶۰ و ۱۴ برای ۱۲۰ درجه بوده است. در تحقیق که از این اکثرب تری میکروکسی سیلائنز (TMOS) به عنوان اصلاح کننده سطح در فناوری تری اوتی‌سیلائنز (TMOS) به عنوان اصلاح کننده ISO- OTMS) که در نسبت مولی ۶۰/۱۵ برابر بهنگی تئوری را در داشتن است و توانسته به زاویه تر شوندگی ۱۰۰ درجه بوده است. [۶].

در این بیانیه از آن‌هایی که بررسی شد، ترکیب نمونه‌ها دیگر نمی‌تواند باعث تغییر داده شد. ترکیب نمونه‌ها در باره (۲-۳-۴) تجربه نمی‌شود. ترکیب نمونه‌ها در بازه (۲-۴-۳) دارای دستی است. برای تکمیل هیدرفورم، محلول مورد نظر بسبین امد ابتدا هم زده شد. در محلول سرم می‌توان با روش غلیظ و با سرعت ۵ نمونه‌ها بردای تشکیل زل به مدت ۳۴ ساعت در دمای اتان (۷۷°C) و

میکروکسی با نانو با استفاده از مواد با انرژی آزاد سطح کم ساخته می‌شوند [۱۲]. تکنیک‌های مختلفی برای ترسیم ترکیب‌های موجود جهت دارد. یکی از روش‌های مطروح ستند فرآیند مثل پپش درسته و غیره، می‌توان با استفاده از فرموله کردن تعیین کرد [۲۳].

و D.Y. Nadargi [۵] گزارش کرده که با افزایش نسبت مولی همکاریش از ۸۳ تا ۳۷۳ ترکیب میکروکسی (TMOS/ TMCS) (از صفر تا ۸۳ تری اوتی‌سیلائنز (TMOS) میکروکسی (TMCS) به عنوان اصلاح کننده سطح در کنار ترکیب‌های سیلائنز (TMOS) میکروکسی (TMCS) به عنوان اصلاح کننده ماده استفاده کرده. اگر بخواهد که زاویه پوشش‌های ترکیب TMOS/TMCS نسبت مولی بین ۶۰ و ۱۴ برای ۱۲۰ درجه بوده است. در تحقیق که از این اکثرب تری میکروکسی سیلائنز (TMOS) به عنوان اصلاح کننده ISO- OTMS) که در نسبت مولی ۶۰/۱۵ برابر بهنگی تئوری را در داشتن است و توانسته به زاویه تر شوندگی ۱۰۰ درجه بوده است. [۶].

در این بیانیه از آن‌هایی که بررسی شد، ترکیب نمونه‌ها دیگر نمی‌تواند باعث تغییر داده شد. ترکیب نمونه‌ها در باره (۲-۳-۴) تجربه نمی‌شود. ترکیب نمونه‌ها در بازه (۲-۴-۳) دارای دستی است. برای تکمیل هیدرفورم، محلول مورد نظر بسبین امد ابتدا هم زده شد. در محلول سرم می‌توان با روش غلیظ و با سرعت ۵ نمونه‌ها بردای تشکیل زل به مدت ۳۴ ساعت در دمای اتان (۷۷°C) و

میکروکسی با نانو با استفاده از مواد با انرژی آزاد سطح کم ساخته می‌شوند [۱۲]. تکنیک‌های مختلفی برای ترسیم ترکیب‌های موجود جهت دارد. یکی از روش‌های مطروح ستند فرآیند مثل پپش درسته و غیره، می‌توان با استفاده از فرموله کردن تعیین کرد [۲۳].

و D.Y. Nadargi [۵] گزارش کرده که با افزایش نسبت مولی همکاریش از ۸۳ تا ۳۷۳ ترکیب میکروکسی (TMOS/ TMCS) (از صفر تا ۸۳ تری اوتی‌سیلائنز (TMOS) میکروکسی (TMCS) به عنوان اصلاح کننده سطح در کنار ترکیب‌های سیلائنز (TMOS) میکروکسی (TMCS) به عنوان اصلاح کننده ماده استفاده کرده. اگر بخواهد که زاویه پوشش‌های ترکیب TMOS/TMCS نسبت مولی بین ۶۰ و ۱۴ برای ۱۲۰ درجه بوده است. در تحقیق که از این اکثرب تری میکروکسی سیلائنز (TMOS) به عنوان اصلاح کننده ISO- OTMS) که در نسبت مولی ۶۰/۱۵ برابر بهنگی تئوری را در داشتن است و توانسته به زاویه تر شوندگی ۱۰۰ درجه بوده است. [۶].

1 N,N-Dimethyl-N-octadecyl-3-amino propyl tri methoxy silyl chloride
مبحث بررسی قرار گرفتند. در پایان برای تشکیل پیوندها خروج حلال باقی مانده، عملیات حلال در دمای 140°C با سرعت 1°C/مین و سرعت 500 مدل انجام شد. با سرد شدن نمونه‌ها تا دمای محیط، آتالیز های مختلف برای بررسی خواص آنها انجام گرفت.

جدول ۱ - ترکیب نمونه‌های مورد بررسی در این پژوهش

<table>
<thead>
<tr>
<th>کد</th>
<th>نمونه</th>
<th>CH₃COOH</th>
<th>H₂O</th>
<th>MeOH</th>
<th>DMOAP</th>
<th>TMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>2</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>M3</td>
<td></td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

برای اندازه‌گیری زاویه نماس (CA) از دستگاه DetapHycies مدل Contact Angel system OCA استفاده شد. برای بررسی تغییر شیمی سطح پوشش سیلیکا از طیف سنجی مادون فرمزی تبدیل فوریه (FT-IR) و یادآوری مقطعه 1400-3600 cm⁻¹ با استفاده از دستگاه Pekin Elmer Spectrometer RXI مدل Lambda 25 استفاده شد. برای بررسی تغییر شیمی سطح پوشش سیلیکا از طیف سنجی مادون فرمزی تبدیل فوریه (UV-Vis) سطح پوشش سیلیکا از دستگاه Pekin Elmer Spectrometer RXI مدل Lambda 25 استفاده شد.

برای بررسی تغییر شیمی سطح، برای بررسی میکروسکوپی رشته‌ای (SEM) مدل Pekin Elmer مدل MIRA\ TESCAN و میکروسکوپ نیروسی ام‌سی (AFM) مدل Park Scientific مدل CP استفاده گردید.

orman ۷ شماره ۴ زمستان ۱۳۹۷

۵۳
بررسی تأثیر ۷م-DMOAP با گروه دی میل اکتا دسیل آمین بروئیل ...

۱- هیدرولیز
۲- کندانس
۳- کندانس

DMOAP

CMOX ۷- اثر نسبت مولی بر زاوه ترشودنگی/TMOS

۱- ۲- ۳- زاوه ترشودنگی

\[\text{Zaohle} = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}} \]

۴- توانست معادله یک رابطه سطح زیر به‌هم‌آورد

\[\text{Costh} = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}} = \text{Costh} \]

۵- نتیجه یکی از فرمول‌های زیر

\[\text{Zaohle} = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}} \]

۶- با فاکتور بری (پایه سطح صاف ۱) است و پایه سطح ۱/۵ مقدار آن بیشتر از یک است.

۷- هنگامی که قطره ما‌ای بر روی سطح جامد و هوا قرار، زاوه ترشودنگی

Cassie–Baxter

\[\text{می‌گیرد، زاوه ترشودنگی توسط حالت بیان می‌شود. در این مورد زاوه ترساژ سطح توسط رابطه ۶} \]

۸- کلیه فرضی می‌شود زاوه ترساژ آب در هوا ۱۸۰ درجه است [۱و۹۸۰۶]
در شکل 1 نشان داده شده است.

\[\text{Cos}_\text{rough} = F \text{Cos}_\text{flat} + (1-F) \text{Cos}180^\circ = \]

\[FCos\text{flat} + F - 1 \]

\(F \): کسری از سطح جدا که توسط مانگیز و زاویه ترشوندگی پوشش سیلیکا در جدول 2 نشان داده شده است. مشاهده شده که در حالت خالص ترشوندگی تر شوندگی برابر 0.25 درجه است. این ویژگی به حضور زیاد گروه‌های هیدروکسیل (OH) نسبت داده می‌شود که موجب ایجاد سطح‌های مهیب به عنوان عامل اصلاح سطح در فرآیند سل-زل تحت شرایط اسیدی، گروه‌های OH یا میتی اکتا دسیل آمین پروپیل کمتری جایگزین می‌شود و گروه‌های ترشوندگی دیکلر 0.25 درجه از نسبت 3/2 و 0.25 در نقطه گره زمان پایانی سل با زاویه ترشوندگی 42/83 دچرا شاهد هستیم.

DMOAP/TMOS

شکل 1- تغییرات زاویه ترشوندگی با تغییر نسبت مولی

DMOAP/TMOS

*تشکیل خواهست O-Si-(CH\(_2\))\(_{2}\)N(CH\(_3\))\(_{2}\)(CH\(_2\))\(_{7}\)CH\(_3\) شد که باعث افزایش زاویه نمی‌گردد. شماتیک این فرآیند در شکل 3 قابل مشاهده می‌باشد. در نسبت‌های کم سطح لاپا از گروه‌های دی مبل اکتا دسیل آمین پروپیل کمتری جایگزین می‌شود که زاویهٔ کمتری را موجب می‌شود. با افزایش غلظت و جایگزینی بیشتر گروه‌های مذکور، زاویه ترشوندگی افزایش پیدا می‌کند و خواص سطح از قطعی (آب دست) به غیر قطعی (آب گیریز) متمایل می‌شود؛ بنابراین مقدار آن در نسبت 3/2، با توجه گره زمان پایانی سل با زاویه ترشوندگی 83/42 درجه را شاهد هستیم.
بررسی تأثیر DMOAP با گروه دی متیل اکتا دسیل آمین بر روی...
برای اتصال به سطح زیری‌های خاویان داشت که باعث کاهش زاویه تماس در مقادیر بالایی می‌شود. همچنین در نسبت‌های بیش از 0/3 سل‌ها در محیط پایدار نیموده و رسوب کردن که شاید ناشی از هیدروژن اسید باشد[۵].

از ترتیب تقریبی ۰/۳ زاویه تماس نمونه M3 نمونه‌های M4 و M5 تأثیر شاخه N-CH2 و C-H ارتباطات کشی متقاقن و تاکترن پوندهای Si-C در نمونه‌های M4 و M3 ظاهر شده‌اند که به ترتیب مربوط به Si-C هستند. پیک‌های ظاهر شده در ۲/۹۱۰ cm-۱ (در نمونه‌های M4 و M3 که با ورود گروه‌های ۴۸۸ سیلیکون به سیلیکون متصل می‌شود) دلیل آن ایجاد اکتا سیلیکون به سیلیکون می‌باشد.

FTIR- بررسی طیف‌های FTIR

ترکیب شیمیایی پوشش سیلیکات بر روی زیر‌لایه شیشه سوکالیک توسط اسکوپوسکوپی FT-IR با استفاده از روش مورد بررسی قرار گرفت. شکل ۱ نسبت ۴ طیف نمونه‌های KBr مورد بررسی قرار گرفته. فرآیندهای ۰/۲۰ میلی‌متر مربع فیبر فیبر اسلاید به میزان مورد نیاز بررسی می‌شود. نمونه‌های M0، M۱، M۲ مربوط به مستقیم FTIR به دوینده مجزا تشکل ساختار (Si-O-Si) به محدوده ۴/۳۰ cm-۱ و پیک پهن ۱/۱۶ cm-۱ مشاهده شده در محدوده ۱/۳۰ cm-۱ و پیک پهن ۱/۱۶ cm-۱ مشاهده شده در محدوده ۱/۳۰ cm-۱ و پیک پهن ۱/۱۶ cm-۱ مشاهده شده در محدوده ۱/۳۰ cm-۱ و پیک پهن ۱/۱۶ cm-۱ مشاهده شده در محدوده ۱/۳۰ cm-۱ و پیک پهن ۱/۱۶ cm-۱ مشاهده شده در محدوده ۱/۳۰ cm-۱ و پیک پهن ۱/۱۶ cm-۱ مشاهده شده در محدوده ۱/۳۰ cm-۱ و پیک پرن.
در بررسی مورفولوژی سطح پوشش سیلیکا‌های رسوب داده شده بر زیر لایه‌های بسته‌سازی و خواص ترشوندگی آن با تغییر نمودن مولی Fe-SEM و تصاویر بعدی DMOAP/TMOS سطح توسط Si-ÖH که می‌تواند توسط ترشوندگی Si-ÖH در سطح 3 برای نمونه‌های اصلاح نشده (M0) و اصلاح شده (M4 و M3) نشان داده شده‌است که سطح در اطراف سیلیس بزرگ‌تر از پیش از اصلاح کننده قرار دارد. با حضور عامل اصلاح می‌تواند ترشوندگی در اطراف سیلیس بزرگ‌تر از پیش از اصلاح کننده قرار دارد. با حضور عامل اصلاح M0 M3 M4

<table>
<thead>
<tr>
<th>نمونه</th>
<th>میانگین زیری سطح (Ra-nm)</th>
<th>زاویه ترشوندگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>0.2793</td>
<td>1297</td>
</tr>
<tr>
<td>M3</td>
<td>0.2752</td>
<td>1297</td>
</tr>
<tr>
<td>M4</td>
<td>0.2842</td>
<td>1297</td>
</tr>
</tbody>
</table>

جدول 3- نتایج AFM و زاویه ترشوندگی Nمونه‌های M0 و M4 و M3.

بررسی تاثیر DMOAP با گزمه‌دهی میل اکتا دسیل آمین پروپیل...

gره‌های Si-ÖH منبع و عامل اصلی ترشوندگی هستند؛ پیک‌های 0H- پوشش سیلیکا در حیف نمونه M0 کاملا مشاهد است اما شدت آنها با ورود DMOAP وارد شدند. گره‌های M3 دمی اکتا دسیل آمین پروپیل (نمونه‌های M3 و M4) کاهش می‌یابند. بطوری که شدت پیک در محدوده (1 cm3) 3.4 می‌باشد.

Table 3 - AFM results and wettability angles of M0, M3, and M4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>rms roughness (nm)</th>
<th>Contact angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>0.2793</td>
<td>1297</td>
</tr>
<tr>
<td>M3</td>
<td>0.2752</td>
<td>1297</td>
</tr>
<tr>
<td>M4</td>
<td>0.2842</td>
<td>1297</td>
</tr>
</tbody>
</table>

Table 8-1-1 نتایج 2 شماره 4-1397
شکل 5- تصاویر سه بعده، AFM و تصاویر Fe-SEM نمونه‌های M0، M3 و M4.
5- بررسی عبور نور
شفافیت پوست و زیری در ارتباط با یکدیگر می‌باشد؛ چرا که از عوامل پراکندگی نور و کاهش شدید عبور نور، زیری سطح می‌باشد. هنگامی که سطح افزایش می‌یابد، این اطلاع رسانی نیز زیاد می‌شود اما شفافیت، اغلب کاهش می‌یابد. در شرایطی که ابعاد زیری بسیار کمتر از طول موج نور می‌باشد، به علت تغییر ضربه شکست بین هوا و زمینه پوست، شفافیت می‌شود که کاهش شدید نمی‌گردد در فصل مشترک هوا (با آب) و پوست و افزایش شفافیت را به دنبال دارد.

شکل 6- طیف درصد عبور در محدوده ی طول موج نور مطلق (300-700 nm) می‌باشد. مانند M3 و شیشه

کاربرد را نشان می‌دهد. پیک گرمزای تزییدی دمای ۴۲۰ °C، در منحنی DTA و مطلق با آن، کاهش وزن قابل توجه حذف ۲۰% در محدوده دمای ۶۰۰-۲۰۰ °C (۱۹۹۴-۲۰۰۰) در منحنی TGA به علت تجزیه گروه‌های دی می‌باشد. کاهش دمای آمیزی DMOAP پوستی می‌باشد. پایداری حرارتی پوست با پوست سیلیکا به علت ذرات سیلیکایی اصلاح شده با

6- پایداری حرارتی پوست سیلیسی
به منظور بررسی پایداری حرارتی پوست سیلیسی نمینه، به منظور بررسی پایداری حرارتی نمینه (STA) گرفته شد. دمای حرارتی ترکیب از دمای ۲۲۰ °C شروع می‌شود و همزمان با آن شروع پیک گرمزایا در منحنی DTA مکرر دمای
گروه‌های دی متیل اکتا دسیل آمین بروپیل موجود در سیلیسیت می‌باشد. که بالاتر از 200 درجه سانتی‌گراد، اکسیداسیون گروه‌های آلی، خواص ترشودن گیاهی کاهش می‌یابد و در 200 درجه سانتی‌گراد می‌باشد. گروه‌های دی متیل اکتا دسیل آمین بروپیل موجود در سیلیسیت می‌باشد.

(1) DMOAP/TMOS = 0/3 - نمونه DTA و TGA نشان داد که با افزایش میانگین زاویه ترشودگی در نمونه‌های اصلاح شده نیز زیاد می‌شود.

نتایج گیری

- با افزایش نسبت مواد DMOAP/TMOS زاویه ترشودگی در نمونه‌های اصلاح شده تعیین شد.
- با نظر در نظر گرفتن زمان ماندگاری سل در نسبت 3/0 زاویه ترشودگی افزایش یافت که احتمالاً به علت دسترس پودن بهینه مکانی افول در سطح پوشش سیلیسی می‌باشد.

نتایج FTIR

- نشان داد که شد پیک‌های C-H در C-H 1477 cm⁻¹ و 1371 cm⁻¹ و شدت پیک‌های Si-C در 812 cm⁻¹ و 806 cm⁻¹ پیش‌رفت.

می‌باشد این امر احتمالاً می‌تواند مویده کاکزمینی H-گروه‌های ترشودن گیاهی غیر قابل گروه‌های ترشودن گیاهی غیر قابل

نتایج STA

- با توجه به نتایج تحلیل حرارتی هم‌مانی (STA) ماکزیمم دمای پایدار حرارتی پوشش سیلیسی به‌همه می‌باشد.

نمودار 7- منحنی دمای قطعه Si-OH

Divya Kumar a, XinghuaWua,b, QitaoFua, Jeffrey WengChye Ho a,b, Pushkar D. Kanhere b, Lin Li c, Zhong Chen" Hydrophobic sol–gel coatings based on polydimethilsiloxane for self-cleaning applications" Materials and Design 86 (2015) 855–862.

