افزایش ولتاژ باتری‌های لیتیم فون آبی با استفاده از شیشه سرامیک‌های لیتیم

Li1.5Al0.5Ge1.5(PO4)3

محمد ایلی‌بیگی، ۱ مهدی کریزی، ۲ علیرضا فضعلی

۱ گروه مهندسی شیمی، دانشکده فیزی و مهندسی، دانشگاه اراک، اراک، ایران
۲ گروه مهندسی مواد، دانشکده فیزی و مهندسی، دانشگاه مبارکه، مبارکه، ایران

* m_kazazi@malayeru.ac.ir

اطلاعات مقاله:
دریافت: ۱۴ آبان ۱۳۹۷
پذیرش: ۲۳ اردیبهشت ۱۳۹۸

کلید واژه:
شیشه سرامیک لیتیم الکترونیک
زرمینی فسفات، باتری لیتیم فون
ابی ها، کریزی، الکترونیک نیترات

چکیده:
در این تحقیق، شیشه سرامیک‌های لیتیم الکترونیک لیتیم الکترونیکی زرمینی فسفات (LAGP) به‌وسیله Li1.5Al0.5Ge1.5(PO4)3 به مدت ۸ ساعت سنتز شد. شیشه سرامیک تهیه شده با استفاده از آنتی‌تریک از آن خرابه‌ایکس (XRD) و طیف‌سیاه‌کاریهای الکترونی مناسب می‌باشد. مشخصه‌های شدت آنتانی‌های XRD، نشان‌دهنده وجود فاز غالب FESEM مشخصه‌پذیر آنتانی‌های باشگاه‌های مبهم درست و فاز تاخیری گازه‌های GeO2 و LIGe2(PO4)3 و هم‌نداشتن LAGP ساخته شده به عنوان غشاء محافظ در باتری‌های لیتیم بی‌ای می‌باشد. منظره افزایش ولتاژ اثر استفاده قرار گرفتن، باتری‌های لیثیم، ساخته شده با این گرافیت و کاندباکس الکترونیکی با تبدیل لیثیم انس، تغییرات در مقادیر انتقال تخلیه V/4 و تغییرات تخلیه LiMn2O4 و ۱۱۷ mAh/g با وزن کنترل کرده تا قابل مقایسه با باتری‌های لیثیم فون آبی می‌باشد.

۱ مقدمه
با رشد سریع دستگاه‌های قابل حمل الکترونیکی شامل خودروهای الکترونیکی و هیبریدی، تلفن‌های همراه، لپ‌تاپ‌ها و ... توسعه باتری‌های لیثیمی با خواص بهتری از جمله چگالی انرژی بالا، توان بالا، قیمت مناسب، قابلیت اطمینان و ایمنی بسیار ضروری به نظر می‌رسد. [۱،۲] موارد آخر به‌عنی قیمت تمام شده مناسب باتری و ایمنی چه توزیع خودروهای

۶۳
افزایش ولتاژ باتری‌های لیتیوم يون آی با استفاده از شیشه سرمایک هادی...

الکترولیت آی کاهش قابل توجهی خواهد داشت. به تحقیقات بسیاری در زمینه استفاده از الکترولیتهای آبی در باتری‌های لیتیوم می‌پردازند و گرفتگی این کاهش ممکن است که تقریباً همگی آن‌ها سی‌سی و آن‌ندی در محصولات بیانیار الکترولیتهای آبی استفاده کرده‌اند که می‌توانه به کاهش نسبت نسبتاً بالا، فشار و قابل اشتغال می‌باشد که نیاز به می‌باشد. از این لحاظ استفاده از الکترولیتهای آبی برای کاربردهای خودروی الکتریکی و هیبریدی نماید می‌تواند که آن به دلیل احتمال انفجار باتری‌های با الکترولیت آبی در سیکل‌های شارژ و تخلیه سریع می‌باشد. پیشنهاد می‌شود که الکترولیتهای آبی با الکترولیت آبی یکی از راهکارها برای حل این مشکلات می‌باشد. این نکته نظر الکترولیتهای آبی پاک همیشه به نوع الی شان تریج داده می‌شود (هوری). می‌تواند، الکترولیتهای آبی دارای هدایت روند پری و حرارت الکترولیتهای آبی دارند که این موضوع به تعیین نرخ جریان‌دهی باتری‌ها کمک کرد. شیشه‌هایی که اگرچه الکترولیتهای آبی مشکلات نظر سیمیت، اینمی و Exclude جریان‌دهی باتری را از حد زیادی متقابل می‌کند، اما استفاده از الکترولیتهای هیدروکربن مشکلات کرده به سیستم افتدوار خواهید کرد. از همچنین، مشکلات باتری‌های الکترولیتهای آبی می‌توان به محدوده بین‌ریختی پیانی یادی لیتیوم [10] که همین موضوع استفاده از دیش سرمایک را به عنوان غشاء و لایه محافل آن گرافیت در باتری‌های لیتیوم هزینه سرمایک را به عنوان غشاء و لایه محافل آن گرافیت در باتری‌های لیتیوم یون آی می‌سازد. هدف کار حاضر فیزیکی ولتاژ باتری‌های لیتیوم ۱۱ و باتری‌های لیتیوم یون آی در خارج از محصولات بیانیار الکترولیتهای آبی می‌باشد. باتری‌های تهیه شده با استفاده از تکنیک‌های الکتروشیمیایی مختلف تظییر و تامینی جرخای,

دوره ۷ شماره ۴ زمستان ۱۳۹۷

۶۴
شیشه سرامیکی هایی که در LAGP سرامیک استفاده می‌شوند، این تحقیق با استفاده از روش کوئین شیشه سنگر و سپس عملیات حرارتی برای ایجاد کریستالولوژی بهینه تهیه شد (۱۰). به طور خلاصه، مقادیر استوکومیتری از دی‌کسید زرمینیوم (۱۶Li2O۹۹/۵% Na2O، کربنات لیتیوم (۹۷Li2O۹۹/۵% Na2O، آکسید آلومینیم (۹۹/۵% Al2O3) (بافت ۰/۱ میلی‌گرم) توزیع شده و به مدت ۲۰ دقیقه در هواونه اکسیکال با یکدیگر مخلوط شدند.

سپس مخلوط به دسته امده برای ۲ ساعت در ۱۰۰۰°C حرارت داده شدند تا مواد تجزیه شده و بخارات دی‌کسید کربن، آمونیاک و آب خارج شوند. در ادامه، مخلوط پفکی به دست امده پس از خردش برای هواونه با پوشه پلایتی متعلق شده و برای یک ساعت در دمای ۱۴۵۰°C حزارت داده شدند. سپس مذاب همگن به دست امده از کروه خارج و بین دو رونق فولاد زنگ پُس گرم شده تا دمای ۳۰۰۰°C پرس شد تا هواونه شیشه‌ای به دست آید. مجدداً، پوشه‌های شیشه‌ای به نهایت پوشه‌های شیشه‌ای تنش گری شدند و در نهایت پوشه‌های شیشه‌ای تنش گری شده در دمای ۵۰۰۰°C به ترتیب ۲ ساعت نشانگر شدند و در نهایت پوشه‌های شیشه‌ای تنش گری شده در دمای ۸۰۰۰°C کریستال شدند.

در دوای ۱۳۹۷ شماره ۴ زمان، ۶۵
گرفت و همزمان سطح آند و کاند به منظور بررسی
احتمالی آزادسازی گازهای اکسیژن و هیدروژن مورد بررسی
چشمی قرار گرفت.

۳- نتایج و بحث

۳-۱- مشخصه‌یابی شیشه سرامیک
LAGP
شکل ۲ تصاویر نمونه‌های LAGP تهیه شده قبل و پس از
عملیات کربنیلیزاسیون در دمای ۸۰۰ درجه سانتی‌گراد.

![شکل ۱ - تصویر شماتیک نحوه ساخت باتری‌های مورد استفاده.](image1)

![شکل ۲ - تصاویر نمونه (الف) آморف و (ب) کریستال شده LAGP در دمای ۸۰۰ درجه سانتی‌گراد.](image2)
فازی عایق و مضر است، در ساختار شیشه سرامیک تهیه شده وجود ندارد [12].

فراوردهٔ نتایج به معنی این است که برای حرکت و نفوذ جوش در حد صفر از خود نشان می‌دهد. کریستال رومبوهریال LGP مشکل‌یافته در یک اسکلت کوالانسی [Ge5P3O12]− می‌باشد که از دو نوع ساختار اکتاهدرال PO4 و تراکم‌های PO4 تکثیر شده است. در این ساختار کریستال تمام شیء مربوط به هسته و ناحیه‌ی با تمام جهات برای بررسی تعداد این ساختار کاتالیز نهایی ایجاد می‌گردد که مسیر حرکت بین [Li+] را فراهم می‌کند [12] و شکل 4 ناحیه‌ی شامل گره مربوط به کریستال LAGP به‌همراه جنس و های تکامل دهنده و ناحیه‌ی انسال‌ی آن‌ها به‌yükیچک را نشان می‌دهد.

الگوهای XRD نمونه شیشه سرامیک تهیه شده پس از ۸ ساعت عملیات کریستالیزاسیون در دمای ۸۰۰°C در شکل ۳ نشان داده شده است. پیک‌های تقریباً هم‌مرتبه نشان داده شده است (LGP LiGe3(PO4)2) (1924) (JCPDS) مربوط می‌شود. برای مقادیر زیادی او از آلومینیم از طرفی در محل‌های زرمانیوم جهان طرفی، الگوی XRD هم‌مرتبه با پردازش LAGP دارد و همین پیک تقریبی مربوط به اکسید آلومینیوم مشاهده نمی‌شود که کسان دنده دوب LGP شدن کمالی موفقیت های آلومینیوم در ساختار است. جایزدینهٔ شدن AI3+ به شعاع بیونی Ge4+ با جای AI3+ مشابه AI3+ (A) Ge4+ (A) Al54 (A) مربوط می‌شود [11 و 12]. مطلق الگوی XRD فاز قابل مشاهده LAGP LiGe3(PO4)2 می‌باشد و پیک‌های مربوط به فاز AlPO4 مشاهده می‌شود. مهمتر از همه اینکه فاز تاخفصیه که AIPO4
تصویر میکروسکوپ الکترونی روبیشی گسل میدانی سطح شکست شیشه سرامیک به شده قبل و بعد از عملیات حرارتی کریستالیزاسیون در شکل 5 نشان داده شده است. همانطور که در شکل 5 (الف) نشان داده شده است، هیچ کریستالی با دانه‌ای در تصویر وجود ندارد که آن به علت سرعت سرد شدن مذاب شیشه است و نشان می‌دهد که با استفاده از روش بیشتری استفاده شده در بین صفحات فولادي، ساختار کاملاً آمریکی به دست آمده است. همچنین، شیشه به دست آمده کامل‌تر و عاری از هر گونه خرف و تخلخل است. این مورد جهت ساخت غشاء ضروری می‌باشد، به‌خاطر اینکه در صورت تخلخل‌های راه به در امکان هزینه به آن سوی غشاء وجود دارد. در صورت عدم عمل، آگهی گرافیتی در تاسیس با الکتروپیت آبی قرار خواهد گرفت و در نتیجه این کار سازی گاز هیدروژن در پتانسیل‌های اکسایش-کاهش لیتیم در آند گرافیتی حتی خواهد بود. همچنین، وجود حفرات و تخلخل‌ها...
شکل ۵- تصویر میکروسکوپ الکترونی روبشی گسلی میانی شیشه سرامیک کریستالناسیون در دمای ۲۰۰ درجه سانتی‌گراد و بعد از عملیات حرارتی LAGP قبل و بعد از عملیات حرارتی

در منحنی شارژ (روش آندی) نخستین یک که در پتانسیل لیتیوم-لیتیوم-لیتیوم V_{SCE} ۰/۹۵ ظاهر می‌شود، خروج یون لیتیوم از نصف مکان‌های تتراهدرال کربنات LMO با برهم‌کنش لیتیوم-لیتیوم-لیتیوم V_{SCE} ۰/۸۸ خروج یون لیتیوم از نصف بقیه‌انه مکان‌های تتراهدرال بدون برهم‌کنش لیتیوم-لیتیوم-لیتیوم می‌دهد. انتقال بین دو مرحله خروج ناشی از دامنه بین یون‌های لیتیوم است [۱۶]. در منحنی تخلیه (روش برگشت) ورد لیتیوم نیز به صورت دو مرحله ای صورت می‌گیرد و به ازای هر مرحله V_{SCE} ۰/۹۴ V_{SCE} ۰/۸۸ و یک مجزا به ترتیب در پتانسیل لیتیوم-لیتیوم-لیتیوم-لیتیوم در LiMn_2O_4 مربوط به کاندید

محلول اشباع نیترات لیتیوم در شکل ۶ نشان داده شده است. این آزمون در محدوده ولتاژ V/۰/۳—۰/۵ و با نرخ رویش ۱ در یک سیستم سه الکترودی (سیستم LMO به عنوان الکترود کار، الکترود کالونی به عنوان الکترود مرجع و مش نیکل به عنوان الکترود کمیک) مورد استفاده قرار گرفته‌اند. همان گونه که مشاهده می‌شود دو پیک کاملاً مشخص در هر کدام از رویش‌های آندی و کاندید دیده می‌شود. ورد و خروج یون لیتیوم می‌توانند مطابق با اکتشف زیر نشان داده شود:

LiMn_2O_4_{\text{Li}_{1-x}Mn_2O_4+Xe^++XLi}^{1-}$
احیاء مشاهده نمی‌شود که تنش میدهد اکسیاس-کاهش لیتیم در کاند LMO در بازه پایداری الکترولیت آبی رخ LMO در محلول اشباع نیترات لیتیم با نرخ روبش 1 mV/s

ویکپوس است و در تبیه‌ای باتری کامل مشکلک از کاند LMO و آند گرافیت در الکترولیت محلول اشباع نیترات لیتیم درحالی انجام گرفته که آند گرافیتی توسط غشاء محافظی از جنس شیشه سرامیک LAGP به فشار حذف شده است.

100 میکرومتر محافظت می‌شود. شکل 7 منحنی‌های شارژ و تخلیه این باتری کامل را در جریان تابی C=148/2 تست کننده میدهد. همان‌طور که مشاهده می‌شود، منحنی‌های شارژ و تخلیه دارای دو تابیه پایا هستند که کاملاً مطابق با منحنی ونامتری چرخهای به دست آمده در شکل 6 و در نتیجه خروج و ورود دو مرحله‌ای لیتیم از ساختار ایجاد می‌شود. مطابق منحنی تخلیه این باتری ولتاژ LMO متوسط تخلیه در حدود V7/2 واروند که به صورت واضح نشان میدهد که با استفاده از تکنیک لایه حفاظت به صورت کاملاً موافق خروج از ناحیه پایداری الکترولیت آبی به

<table>
<thead>
<tr>
<th>دوره</th>
<th>شماره</th>
<th>زبان</th>
<th>سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>1397</td>
<td>70</td>
<td>فارسی</td>
<td>1397</td>
</tr>
</tbody>
</table>
عبور مولکول‌های آب و بیون‌های هیدروژن و آکسیژن را جنگ و بنابراین با این روش می‌توان باتری‌هایی با پتانسیل محیط‌زیست تولید کرد.

شکل ۷ - منحنی‌های شارژ و تخلیه باتری کامل با یک LMO و آن در گرافیت با لایه محافظ LAGP در نرخ جریان C/۵

۴- نتیجه‌گیری

در این پژوهش، شیشه سرامیک هدایت بیون لیتیم به روش دوب و ریخته‌گری بین Li1.5Al0.5Ge1.5(PO4)3 و صفحات فولادی و سیس کریستال‌گرایی در دمای ۸۰۰ درجه سانتی‌گراد در ۸ ساعت تولید شده. آنالیز XRD نشان دهنده سنتز موفقیت است که شیشه سرامیک می‌تواند در روش‌های دانه‌های مکسیمیم یا دشوار برای هدایت مناسب بیون‌های لیتیم می‌باشد. شیشه سرامیک تهیه شده با هدایت مناسب به عنوان غشاء محافظ مورد استفاده قرار گرفت.

مراجع

[۱] Xu X., Wen Z., Gu Z., Xu X., Lin Z., Preparition and characterization of lithium ion-conducting glass-ceramics in the Li1.5Al0.5Ge1.5(PO4)3 system, Electrochemistry Communications, 2004, 6 (12), 1233–1237.

[۲] Xu X.X., Wen Z.Y., Gu Z.H., Lin Z.X.,
Mohammadi A.M., Preparation, characterization and stability of Li-ion conducting \(\text{Li}_{1.5}\text{Al}_{0.5}\text{Ge}_{1.5}(\text{PO}_4)_3 \) glass-ceramic with NASICON-type structure, Advanced Ceramics Progress, 2016, 2 (1), 38-43.

[16] High lithium conductivity in \(\text{Li}_{1.3}\text{Cr}_{0.3}\text{Ge}_{1.7}(\text{PO}_4)_3 \) glass-ceramics, Materials Letters, 2004, 58 (27), 3428–3431.

