فصلنامه علمی پژوهشی
دروزه ۲، شماره ۳، زمستان ۱۳۹۷

افزایش ولتاژ باتری‌های لیتیوم یون آبی با استفاده از شیشه سرامیک هادی یون

Li۱.۵۸Al۰.۵Ge۱.۵(PO۴)۳

محمد ایرانی‌پیکی، مهدی گرایی ۲، علیرضا فضلی ۱

۱) گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

۲) گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه ملاŵی، ملاŵی، ایران

* m_kazazi@malayeru.ac.ir

اطلاعات مقاله:
دریافت: ۱۴ ابان ۱۳۹۷
پذیرش: ۲۲ اردیبهشت ۱۳۹۸

کلید واژه:
شیشه سرامیک لیتیوم آمینم، زردرنگ، سرامیک هادی یون

۱۱۷ mAh/GR

چکیده:
در این پژوهش، شیشه سرامیک هادی یون اتیل‌یولیک آمینومیم زردی در سطح (LAP) با فرمول Li۱.۵۸Al۰.۵Ge۱.۵(PO۴)۳ به روش کوچک‌العملی سپری شد. سپس ویژگی‌های شیشه سرامیک تهیه شده از ترکیب این اکسید (KRD) و میکروسکوپ الکترونی روبشی (FESEM) مشخص شد. شدت آنالیز XRD نشان دهنده وجود فاز غالب XRD/FeSEM مشخصی، مشخص شد. این اکسید که به عنوان خشک‌کن در باتری‌های لیتیوم یون باشد به منظور افزایش ولتاژ مورد استفاده قرار گرفته، باتری ساخته شده با این گرافیت و کاندیدات و کلسیم نیترات اتیل‌یولیک آمینومیم زردی در سطح (LAP) اکسید شده با کمک عناصر محاسبه و تغییر pH قابلیت‌های باتری یونی باعث ایجاد یک مقدار جدیدی از باتری‌های لیتیوم یون به دلیل توان بالا.

۱- مقدمه

با رشد سریع دستگاه‌های قابل حمل الکترونیکی شمار

خودروهای الکترونیکی و هیریدای، تلفن‌های همراه، لپ‌تاپ‌ها

و ... توسه نیاز به باتری‌هایی با خواص بهینه از جمله چگالی

انرژی بالا، توان بالا، قیمت مناسب، قابلیت اطمنی و ایمنی

بی‌سیار ضروری به نظر می‌رسد [۱-۲۰]. موارد آن به عنوان قیمت

تأمیم شده مناسب باتری و ایمنی جهت توسه خودروهای
۱۵۴

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۲

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۳

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۴

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۵

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۶

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۷

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۸

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۵۹

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۰

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۱

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۲

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۳

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۴

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۵

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۶

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۷

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۸

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۶۹

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰

۱۷۰

کتاب کمکی، درجه ۱، شماره ۸، جلد ۳، ماه می ۱۳۸۰
دانش‌آموزی‌های مغز‌شناختی و سایر افراد با توجه به تعداد زیادی از نکاتی که در این مقاله گفته شدند، ممکن است بتوانند از آن‌ها استفاده کنند. کلید هوا مورد افزایش شده در این تحقیق از آن در فیزیک، کامپیوتر و همکاری‌های گروهی شده است. نتایج و محلول آبی ترکیب‌های شناسایی مقدار دادند. نتایج مهم در این باتری‌های این است که لایه‌های محیطی از شیشه سرامیک تهیه شده بر روی آن گرافیت‌های قرار داده شده‌اند. ارتقاء فیزیکی آن با الکترونیک‌های اپی یک قطعه به رنگ سبز و در نتیجه از احیای بیون‌های هیدروژن و در توجه آزادسازی گاز هیدروژن جلوگیری به عمل آید. علاوه بر تهیه شادابی ناحیه باتری‌های مرد بررسی را نشان می‌دهد. غشاء مورد افزایش در باتری‌های از شیشه سرامیک تهیه شده، ساخته شدن. برای این منظور، پولی‌کاری شده سرامیک برای رسیدن به ضخامت باین حدود 100 میکرومتر باید شدن تا به این ضخامت حداکثر بررسد. جهت تهیه الکترودهای منبت و منفی، 25 ردیسه ونیزی از LMO (N, 99.9٪، ترکیب کربن) جهت آند و MTI (99.5٪، آمریکا) جهت کاتان، 15 ردیسه کربن PVDF استرلیتی به عنوان ماده‌های روی و 10 ردیسه به عنوان بازیاب در مخلوط (Polyvinylidene difluoride) نمایشگر پلاک‌های سرامیک در حال‌داده هوشمندی مدل پلاک‌های نمایشگر شده شده است. در نهایت پلاک‌های شیشه‌ای تنش گیری شده برای 8 ساعت دوره 7 شماره 2 وزن‌سنج 1397
گرفت و همگام سطح آند و کاند به منظور بررسی احتمال آزادسازی گازهای اکسیژن و هیدروژن مورد بررسی چشم قرار گرفت.

3-3- نتایج و بحث

3-1- مشخصه‌یابی شیشه سرامیک LAGP

شکل ۲- تصاویر نمونه‌های LAGP به شکل قلب و پس از عملیات کریستالیزاسیون در دمای ℃۸۰۰ برای ۸ ساعت را نشان می‌دهد.

شکل ۱- تصویر شماتیک نحوه ساخت باتری‌های مورد استفاده.

فول آلومینیم پوشش داده شد. پس از تبخیر حلال آلی، الکترودهای حاصل در آن خلا در دمای ℃۶۰ برای ۱۲ ساعت خشک شدند. همچنین، دو‌گاب آندی بر روی شیشه سرامیک تهیه پوشش داده شد و از طرف دیگر جمع کننده جریان نقره بر روی گرافیت پوشش داده شد. به منظور تعيين ميزان ماده فعال در هر الکترود وزن هر الکترود قبل و پس از فرايند پوششده‌ها با دقت ۱/۰۱ ميلي‌گرم اندازه‌گيري شدند. پس از تهيه سل، محلول اشباع نيتات لتیم (98% مرك) در آب دوبار تقطير تهيه و درون سل ريخته شد. آزمون‌هاي ولتاژ‌ي و صارعي تخلیه جريان ثابت بر روی سل كامل تهيه شده صورت.

دوره ۷ شماره ۴ زمستان ۱۳۹۷
فازی عایقی و مضر بوده است، در ساختار شیشه سرامیک تهیه شده وجود ندارد [12].

فرآیند تبلور به منظور ایجاد گانال هایی برای حرکت و نفوذ پانیده می‌باشد. نمونه‌های شیشه‌ای تقریباً هدایت می‌توانند در حد صفر از خود نشان می‌دهند. کریستال الروموهردراس LAGP مشکل از یک اسکلت گوالانسی [3] ساخته شده که از دو نوع ساختار اکتاهردال [Ge3P2O12]3− و تراهردال [PO4]3− تشکیل شده است. در این ساختار کریستالی تمام شیک گوشه مربوط به هشت و چهار ها با تمام چهار گوشه مربوط به چهار و چهار ها با هم به اشتراک گذاشته شده‌اند از نظر مشابهی که در این ساختار کانال‌های ایجاد می‌گردد که مهم حرکت پانیده Li+ را فراهم می‌کند [13].

شکل ۳- این شکل ۴ محیط واحد مربوط به کریستال LAGP به همراه نهایی تشکیلدهنده، و نحوه اتصال آنها به یکدیگر را نشان می‌دهد.

الگوهای XRD نمونه شیشه سرامیک تهیه شده پس از ۸ ساعت عملیات کریستالیزاسیون در دمای ۹۰۰ درجه سانتی‌گراد [14][4] (LGP LiGe2(PO4)3) در نسخه کم‌پس کردن (JCPDS) مربوط می‌شوند. برای مثال، کردن مقادیر زیادی از آلومینیم سه‌تونفیتی در محلای زرمانیوم جهار طرفی خود از نظر XRD هم‌خوانی به‌سیار خوبی با ساختار LAGP دارد و هم یک ترکیب مربوط به اکسید آلومینیوم مشاهده می‌شود که نشان دهنده دوبو LGP شنا کاملاً موفق بوده آلومینیم در ساختار LAGP است. جایگذاری شیشه که به شکل Al3+ با یک Al4+ مشابه [4] (Al4+ A (Ge4+ A (Ge4+ ۲۳۴/۱۳۴/۱۳۴) مرتب شده‌اند XRD فاز قابل مشاهده LAGP فاز مثبت [14][14] می‌باشد و عمره‌ای به‌صورت مربوط به فاز LiGe2(PO4)3 مشاهده می‌شود. مهتر از همه اینکه فاز ناخالصی که AlPO4

* LiGe2(PO4)3
GeO2

LAGP glass-ceramic

\[\text{Intensity} \] \[\text{10} \quad \text{20} \quad \text{30} \quad \text{40} \quad \text{50} \quad \text{60} \quad \text{29 / degree} \]

شکل ۳- الگوهای XRD شیشه سرامیک تهیه شده پس از عملیات حرارتی کریستالیزاسیون در دمای ۹۰۰ درجه سانتی‌گراد ۸ ساعت.
تصویر میکروسکوپ الکترونی رویشی گسیل میدانی سطح
شکست شیشه سرامیک تهیه شده قبل و بعد از عملیات
حرارتی کریستالزاسیون در شکل ۵ تنش داده شده است.
همانطور که در شکل ۵ (الف) تنش داده شده است، هیچ
کریستال یا دانه‌ای در تصویر وجود ندارد که آن به علت
سريع سرد شدن مذاب شیشه است و توان می‌دهد که با
استفاده از روش ریخته‌گری استفاده شده به بین صفحات
فولادی ساختار کاملآ منصوری به دست آمده است.
همچنین، شیشه به دست آمده کاملآ متراکم و عاری از هر
گونه حفره و تخلخلی است. این مورد جهت ساخت غشاء
ضوری می‌باشد. به‌طور اینکه در صورت تخلخلی راه
به آن امکان عبور الکتروپلیت به آن سوی غشاء وجود دارد.
در صورت جنین عملی، آدگرافی در ترکیب با الکتروپلیت
باید قرار خواهد گرفت و در نتیجه ازدای سازی گاز هیدروژن
در پتانسیل‌های اکسایشی که لیمیم در آند گرافی بر
حتی خواهد بود. همچنین، وجود حفرات و تخلخل‌ها

شکل ۴- مکعب واحد مربوط به کریستال LGP و چند وجهی‌های تشکل دهنده (۱۵) مکعب واحد مربوط به کریستال LGP و کریستال LGP...
شکل 5- تصویر میکروسکوپ الکترونی روبشی گسل میدانی شیشه سرامیکی LAGP قبل و بعد از عملیات حرارتی. کریستالاسیون در دماي 800 درجه سانتی‌گراد.

tصور و سلولوگرام چرخه‌ای مربوط به کاند ۴ در محلول اشباع نیترات لیتیوم در شکل ۶ نشان داده شده است. این آزمون در محدوده و تنازی V=۱/۳-۱/۵ و با نرخ روبش ۱ در میلی‌واتر انجام شد. لیتیوم به عنوان الکترود کار، الکترود کالومی به عنوان الکترود مرجع و مش نیکل به عنوان الکترود کمالی مورد استفاده قرار گرفتند. همان‌گونه که مشاهده می‌شود در پیک کاملاً مشخص در هر کدام از روبش‌های آنی و کاندی دیده می‌شود، روبرو خروج یون لیتیوم می‌تواند میکروکال و اکنون زیر نشان داده شود:

\[
\text{LiMn}_2\text{O}_4 \leftrightarrow \text{Li}_1.\text{XLi}_2\text{Mn}_2\text{O}_4 + \text{X}^+ + \text{X}\text{Li}^+ \quad (1)
\]
الاثب و تکلیف به‌سهرای باتری کامل مشخص جزئی که باتری LMO متحرک نیست، لیتوکوپت LMO در محلول اشباع نیترات لیتیوم با نرخ روبیش 1 mV/s

زمرزه و تخلیه پر دهانی و مجزا در حد واتاقه زمان که کلیت LMO در محلول اشباع نیترات لیتیوم در حالی انجام گرفته که از نیتروژن توسط غشاء محورگی از جنس شیشه سرامیک LAGP تهیه شده به ضخامت حدود 100 میکرومتر محفظه می‌شود. شکل 7 متحفیه شارژ و تخلیه این باتری کامل را در جریان ثابت C=1/5 مشاهده کرد (C=1/5) تنش می‌دهد. همان طور که دیده می‌شود، منتجه شارژ و تخلیه دارای دو تابعی بایا به‌هستند که شکل 6 - تصویر ولتاگرام چرخهای مروبی به کاند LMO در محلول اشباع نیترات لیتیوم با نرخ روبیش 1 mV/s

\[\text{LiMn}_2\text{O}_4 \]
عبر مرکزی بالا و در عین حال ارزان، ایمن و دوستدار محیط‌زیست تولید کرد.

کند و بنابراین با این روش می‌توان باتری‌هایی با پتانسیل شکل 7- منحنی‌های شارژ و تخلیه باتری کامل با کاهدن LMO و آند گرافیت با لایه محافظ LAGP در نرخ جریان C/5

سیاست‌گزاری
کار تحقیقاتی حاضر به لحاظ مالی توسط دانشگاه ملایر حمایت شده است. نویسندگان مقاله از دکتر علی‌اصفه فضل‌الی و امیر حسن محمدی کمال تشرک و قدردانی را دارد.

مراجع
[1] Xu X., Wen Z., Gu Z., Xu X., Lin Z., Preparation and characterization of lithium ion-conducting glass-ceramics in the Li$_{1+x}$Cr$_x$Ge$_{2-x}$(PO$_4$)$_3$ system, Electrochemistry Communications, 2004, 6 (12), 1233–1237.

Mohammadi A.M., Preparation, characterization and stability of Li-ion conducting \(\text{Li}_{1.5}\text{Al}_{0.5}\text{Ge}_{1.5}(\text{PO}_4)_3 \) glass-ceramic with NASICON-type structure, Advanced Ceramics Progress, 2016, 2 (1), 38-43.

[16] High lithium conductivity in \(\text{Li}_{1.3}\text{Cr}_{0.3}\text{Ge}_{1.7}(\text{PO}_4)_3 \) glass-ceramics, Materials Letters, 2004, 58 (27), 3428-3431.

[8] Zhang M., Takahashi K., Uechi I., Takeda Y., Yamamoto O., Im D., Lee D.J., Chi B., Pu J., Li J., Imanishi N., Water-stable lithium anode with \(\text{Li}_{1.4}\text{Al}_{0.4}\text{Ge}_{1.6}(\text{PO}_4)_3 \cdot \text{TiO}_2 \) sheet prepared by tape casting method for lithium-air batteries, Journal of Power Sources, 2013, 235 (15), 117-121.
