بررسی مکانیسم تشکیل کوردیبرت از نانوذرات سیلیس-کلرید منزیم-آلومینیا اکتیو

احمدضا عباسیان ۱، صفورا ب-multان‌هارانی ۲، فریده طباطبایی ۳

۱ گروه مهندسی مواد، دانشکده مهندسی، دانشگاه سیستان و بلوچستان
۲ گروه مهندسی مواد، دانشکده مهندسی، اصفهان
۳ abbasian@eng.usb.ac.ir

چکیده:
سرامیک‌های کوردیبرتی پیش گرفته شده در اساس فرآیند تنظیم مکانیسم تشکیل کوردیبرتی را به نحوی مشخص کرده که مقاومت نانوذرات در ساختار آن‌ها بالای گرده و معمولاً به صورت مجزا در دمای بالا دارد. هدف اصلی این مطالعه بررسی دقیق تری از ساختار و تغییرات فیزیکی نانوذرات در ساختار آن‌هاست. به این ترتیب، نانوذرات سیلیس-کلرید منزیم-آلومینیا اکتیو (XRD) مورد بررسی قرار گرفت. نتایج نشان دهنده که مقاومت نانوذرات از طریق باریکه و دو درصد بالاتری نسبت به کل عناصر اصلی ساختار کوردیبرتی از نظر انسداد از ساختار اولیه کلرید منزیم بالا می‌باشد. نتایج بررسی میکروسکوپ الکترونی ریسیکس (SEM) نشان دهنده که نانوذرات در ساختار خاصی از طریق تغییرات فیزیکی می‌باشد. نتایج نشان می‌دهد که نانوذرات در ساختار کوردیبرتی از تغییرات فیزیکی می‌باشد. نتایج نشان می‌دهد که نانوذرات در ساختار کوردیبرتی از تغییرات فیزیکی می‌باشد.

اطلاعات مقاله:
دریافت: ۳۰ آذر ۱۳۹۷
پذیرش: ۱۵ تیر ۱۳۹۸

کلید واژه:
کوردیبرتی، نانوذرات سیلیس، کلرید منزیم-آلومینیا اکتیو (XRD)، STA

۱- مقدمه

کوردیبرتی با ترکیب شیمیایی Mg2AlSiO18 یکی از مهم‌ترین فازهای سیستم سبزی-سیلیس است. این ماده در ساختار کوردیبرتی به عنوان ترکیب ابزار است. سرامیک‌های کوردیبرتی به عنوان ماده‌های ابزار و ابزار نابوده و باربرند مورد استفاده در ابزار‌های مختلفی است. مطالعات انجام شده در این مورد نشان داده که مقاومت نانوذرات در ساختار کوردیبرتی بالای گرده و معمولاً به صورت مجزا در دمای بالا دارد. برای این که مقاومت نانوذرات در ساختار کوردیبرتی بالای گرده و معمولاً به صورت مجزا در دمای بالا دارد.
کوردبریت را مطلق با انجام واکنش‌های (1) تا (4) گزارش نمودند. طبق واکنش (1) کانالون در دمای 800°C به ماتاکانون تبدیل می‌شود. از ترکیبی که اکسید نیز طبق واکنش (2) به انستانتی و سیلیس اومورف تجزیه می‌شود. با افزایش دما به 1000°C، ماتاکانون به فاز مولایت و سیلیس کریستالی (کربستوبایت) استحالة می‌یابد. سیلیس اومورف نیز در این دما به کربستوبایت تبدیل می‌شود. سرانجام در دمای 1150°C کوردبریت از واکنش بین مولایت، کربستوبایت و انستانت تشكل می‌شود. لامار و وازر [11] نیز در سال 1954 این مکانیسم را پیشنهاد کردند ولی دمای تشكل کوردبریت را 233°C گزارش نمودند. طبق واکنش‌های (5) تا (8) گزارش شده است [10].

(1) \[Al_2SiO_3 \cdot 2H_2O \xrightarrow{800°C} Al_2SiO_3 + H_2O \]
(2) \[Mg_3Si_4O_11 \cdot H_2O \xrightarrow{800°C} 3MgSiO_3 + SiO_2 (amorphous) + H_2O \]
(3) \[Al_2SiO_3 + \xrightarrow{1000°C} Al_2SiO_3 + SiO_2 (cristobalite) \]
(4) \[2Al_2SiO_5 + 5SiO_2 + 6MgSiO_3 \xrightarrow{1150°C} 3Mg_2Al_5SiO_18 \]
(5) \[MgCO_3 \xrightarrow{800°C} MgO + CO_2 \]
(6) \[MgO + Al_2O_3 \xrightarrow{900°C} MgAl_2O_4 \]
(7) \[SiO_2 (amorphous) \xrightarrow{1150°C} SiO_2 (cristobalite) \]
(8) \[2MgAl_2O_4 + 5SiO_2 \xrightarrow{1200°C} Mg_2Al_5SiO_18 \]

ستن کوردبریت در حالت جامد با استفاده از مواد اولیه کربنات منیزیم، آلومینا و سیلیس آمورف (فیلینت) طبق واکنش‌های (5) تا (8) گزارش شده است [10].

پارسینلو و همکارانش [5] در سال 2013 برای ستن کوردبریت از مواد اولیه نانوذرات آلومینا، نانوذرات مسیم و رزین سیلیکونی استفاده نمودند. آن‌ها گزارش نمودند اسپینل آلومینا منیزیم در دمای 1000°C از
کوردیبریت شرور به تکمیل شدن کرده و مقدار آن افزایش می‌یابد، این در حالت است که سفیدین و مسیله بهصورت کریستالیت در دماهای 1150 و 1200 حضور دارد. سرانجام در دمای 1350 کریستالیت و سافیرین نیز به کوردیبریت تبدیل می‌شوند.

همانطور که ملاحظه شده است به طور کلی مکانیسم تکمیل کوردیبریت شامل دو آستانه تشکیل. فازهای میانی تشکیل شده و ترکیب محصول نهایی متغیر است. در پژوهش خاص مکانیسم تکمیل کوردیبریت از مواد اولیه شامل نانوذرات سیلیس، کریستال مسیله و آلومینیا اکسید برای اولین بار مطالعه می‌شود. طبق نتایج تحقیقات گذشته، تشکیل فازهای میانی سبب تولید مولکول از تکمیل نهایی کوردیبریت می‌شود. سپس از واکنش مولکول با پریکلاس (MgO) کوردیبریت و سپس تشکیل می‌شود.

در سال 2013 برای سنتز کوردیبریت از مواد اولیه کالکون و اکسید مسیله استفاده نمودند. طبق مکانیسم پیشنهادی آنها محصول نهایی کوردیبریت همراه با اسپیل است که به طریق دو واکنش به دست می‌آید. نخست نخست اسپیل با مولکول کوردیبریت و اسپیل تشکیل می‌شود. سپس از واکنش مولکول با پریکلاس (MgO) کوردیبریت و سپس تشکیل می‌شود.

WA مقدار کوردیبریت است. بررسی گروه‌های RDX نشان می‌دهد که مقدار واکنش ناخالص سفیدین واکنش نکرده در کنار کوردیبریت وجود دارد. طبق نظر آنها در دمای 950 فاز سافیرین و سه ایستاده در کنار فاز کوارتز مشکی می‌شود. در دمای 1000 فاز ایستاده کامل نابودی شده و از مقدار فاز سافیرین و کوارتز کاسته شده و هم‌زمان تکمیل شکل می‌شود. با افزایش دما به 1100 در مقدار فاز مولکول افت‌زده شده و با افزایش دما به 1150 در مقدار آن به‌شدت کاسته و در دمای 1300 نابودی شده است. در عوض فاز
تولید می شود، استفاده از نانو ارzan قیمت کلرید منیزیم برای اولین بار گزارش می شود.

استفاده از آلومینیا اکثراً به عنوان یک ماده اولیه مناسب توسط برخی محققین گزارش شده است [15].

۳- فعالیت های تجربی

۳-۱- مواد اولیه

در این پژوهش از پودر های نانوذرات سیلیس تجاری با خلوص ۹۸/۶ درصد و محدوده اندازه ذرات ۱۵-۲۰ nm تولید شد. شرکت فنکیران، آلومینیا فعالش با نام تجاری PFR ۲۰ کوچک تر از ۱۰ میکرومتر با محدوده اندازه ذرات (۲/۲ nm) و کلرید منیزیم شش AlTeo تولید شده است. آلبینوم نانوذرات آلومینیا با نام تجاری AlTeo نانوذرات سیلیس (SiO2 نانو) (۲/۲nm) درصد نانوذرات آلومینیا (Al2O3) و (MgCl2.6H2O) فعال شده است.

شکل ۱- آنالیز از مواد اولیه شامل آلومینیا (Al2O3)، کلرید منیزیم (MgCl2.6H2O) و نانوذرات سیلیس (SiO2 نانو)
3- آزمون‌های تجزیه

جهت تعیین مکانیسم واکنش‌ها در مسیر تشکیل کوردیبرت به‌طور همزمان آنالیز حرارتی افتراقی (DTA) و آنالیز توزین حرارتی (TG) توسط دستگاه TA ساخت کنور آمریکا روی مخلوط پودری اولیه انجام شد. بر اساس تغییرات حرارتی و وزن آنالیز هموگرتن، مخلوط‌های پودری اولیه تهیه شده بدون عامل هرگونه فشار در یک بوطه آلومینیایی ریخته شده و هرکدام به مدت 3 ساعت در دماهای مختلف شامل 350، 375، 425، 475، 500 مورد مطالعه قرار گرفت.

۱) آموزش و بحث

منحنی‌های بدست آمده از آنالیز‌های هژمان به‌طور همزمان با DTA-TG نرخ گرمایش 10°С min⁻¹ در انحیس هوا روی مخلوط پودری شامل 33/98 درصد وزنی نانو حیزیل سیلسیس 72/28 درصد وزنی وولفای بالا شده و 44/64 درصد وزنی منیزیم کلرادیت شش آب، در شکل 2 نشان داده شد. به‌طور کلی در منحنی‌های دیگر تقریباً به ترتیب شامل دو یک کور و چوکچن در محدوده 130-150 درجه سانتی‌گراد دانشمندان شکسته شد.
بیانیه مکانیسم تشکیل کوردیریت از نانوذرات سیلیس-گرلید منیزیم-الومینیم اکتیو

شکل ۲- آنالیزهای همزمان با نرخ گرمایش ۱۰۰°C min DTA-TG در انرسفر هوا از مخلوط پودری شامل ۲۳/۸۹ درصد وزنی نانوذرات سیلیس، ۲۳/۸۹ درصد وزنی آلومینیای فعال شده و ۴۴/۶۴ درصد وزنی منیزیم کلراید شش آه.

ششین پیک بهصورت گرمایگیر در دمای ۴۵۷°C مشاهده شد. این پیک مربوط به مولکول کاهش وزن به میزان ۱۱/۴ درصد در منحنی TG است که کاهش وزن توسط مرحله به ترتیب ۱/۲ و ۹/۶ درصدی انجام می‌شود. علت پیک گرمایگیر مشاهده شده در دمای ۴۵۷°C استحالة XRD تشکیل MgOHCl است. شکل ۲ آنالیزات مخلوط‌های اولیه که در مخلوط مختلف کلسینه شده است را نشان می‌دهد. همانطور که مشاهده می‌شود در دمای ۵۲۵°C مرحله مشاهده شده است. با ترکیب شرکت HCl در دمای ۵۲۵°C ترکیب شم Al2O3 متفاوت به کاربرد ۱۸۶۲ -۰۷۵ کیلو گرم مولکولی بر کار (۰ از ۳۰۰ -۰۳۸۰ -۰۰۰۰). این پیک به‌دیل آسیب بودن SiO2 است. لازم به ذکر است که ۱۸۶۲ -۰۷۵ کیلو گرم مولکولی بر کار (۰ از ۳۰۰ -۰۳۸۰ -۰۰۰۰)
در محدوده دمایی 800-1000°C، یک پیک بهنگی گرمازا بدون تغییر وزن قابل توجهی در نمودار TG مشاهده می‌شود.

اثربخشی کمتری از این گروه XRD تغییر نسبت به دمای 65°C نشان می‌دهد. در حالی که در دمای یک گروه XRD مشاهده شد، نشان داد که این بستگی به شکل فاز انسانیت منطقی بر گردان (932°C-96°C) مستلزم است.

به پایداری می‌توان گفت پیک مشاهده شده در محدوده دمایی 800-1000°C مربوط به تشکیل فاز انسانیت منطقی بر گردان (932°C-96°C) است. در شکل 4، اغلب روزرسانی مخلوط پودری کلسینه شده در دمای 900°C نشان داده شده است. با توجه شکل 3 در این مخلوط نمودار XRD نمودار کلسینی شده در دمای 1000°C نسبت به دمای 900°C تغییری که در دمای 1050°C نشان داده شد، با پودر کلسینی شده در دمای 1050°C (شکل 4) شاهد رشد ذرات انسانیت هست. تمام فازها گزارش شده برای EDX تصاویر بر اساس آنالیز شیمیایی تعیین شد. آنالیز شیمیایی مربوط به نواحی مختلف در شکل 3 در جدول 1 ارائه شده است.

\[
\text{MgO(s) + SiO}_2(s) \rightarrow \text{MgSiO}_3(s) \quad (13)
\]

در محدوده دما 1100°C تا 1200°C، یک پیک سبیلی ضعیف گرمازا مشاهده می‌شود. در دمای 1150°C شاهد تشکیل کرستوپالیت منطقی بر کارت (964°C-100°C) در الگوی هستیم. همچنین پیک‌های ضعیفی از فورستریت XRD منطقی بر کارت (1200°C-98-100°C) مشاهده می‌شود. به‌پایداری می‌توان گفت پیک گرمازا مشاهده شده در دمای 1150°C (کرستوپالیت) و همچنین تشکیل فاز فورستریت کلمسیا و قشر خاکستری (کرستوپالیت) و همچنین تشکیل فاز فورستریت

شکل 3- آنالیز XRD از مخلوط پودری شامل (37/98 درصد وزنی) MgCl₂.6H₂O و Al₂O₃ و (1398 مول) نانو-SiO₂ (مخلوط وزنی) که در دماهای 150, 300, 650, 50, 1050, 1150, 1290 و 1390°C به مدت 3 ساعت حرارت دهلی شده‌اند.
از طرف دیگر، شاهد تشکیل پیک‌های مربوط به استیبل منان‌SiO$_2$ متعلق به کارتا شماره (۱۴-۹۹) هستیم. بنابراین می‌توان گفت در محدوده دمایی 1290° در محیط Al_2O_3 موجود در ترکیب از طریق واکنش (۳۵۰) سبب تشکیل اسپیدی MgAl_2O_4 می‌شود. همچنین بخش دیگر MgO با واکنش با استیبل MgO سبب افزایش تشکیل فورستریت از طریق واکنش (۱۵) سبب شده است. این نتایج از جمله این است که نتوانستی تشکیل شده باشد.

$2\text{MgO(s)} + \text{SiO}_2(s) \rightarrow \text{MgSiO}_4(s)$

با افزایش دمای کلسیتاسیون به 1390° در به‌کارگیری از کارتا شماره (۱۴۸) دمای نتیجه‌گیری شده است که در ترکیب Al_2O_3 و SiO_2، کاهش شدید نسبی پیک‌های آلومینیا و MgSiO_4 مشاهده می‌شود. MgO و استیبل هستیم.

شکل ۴- تصاویر میکروسکوپ الکترونی روبشی از مخلوط پودری شامل (۱۹۸) درصد وزنی $\text{MgCl}_2.6\text{H}_2\text{O}$ که در دماهای (الف) 1390° درصد وزنی (ب) 1150° درصد وزنی (ج) 1050° درصد وزنی (د) 900° درصد وزنی به مدت ۳ ساعت حرارت دهی شده است.

دوره ۸ شماره ۱ بهار ۱۳۹۸
جدول ۱- آنالیز EDX

<table>
<thead>
<tr>
<th>درصد انتخابی</th>
<th>عنصر</th>
<th>درصد وزنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>۱/۲۴/۰۹</td>
<td>۵۲/۴۰</td>
</tr>
<tr>
<td>Mg</td>
<td>۱/۰۶/۰۵</td>
<td>۶/۵۱</td>
</tr>
<tr>
<td>Si</td>
<td>۱/۰۹/۶۵</td>
<td>۲۹/۶۵</td>
</tr>
<tr>
<td>Al</td>
<td>۰/۰۹/۶۱</td>
<td>۱/۰۳</td>
</tr>
<tr>
<td>O</td>
<td>۶/۵/۰۵</td>
<td>۵۰/۲</td>
</tr>
<tr>
<td>Mg</td>
<td>۲/۰/۸۷</td>
<td>۲۸/۴۷</td>
</tr>
<tr>
<td>Si</td>
<td>۱/۷/۰۸</td>
<td>۱۷/۰۸</td>
</tr>
<tr>
<td>Al</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>۶/۱/۷۷</td>
<td>۴۸/۵</td>
</tr>
<tr>
<td>Mg</td>
<td>۷/۰/۴</td>
<td>۸/۳۷</td>
</tr>
<tr>
<td>Si</td>
<td>۱/۷/۰۸</td>
<td>۲۳/۴۶</td>
</tr>
<tr>
<td>Al</td>
<td>۱/۴/۰۱</td>
<td>۱۹/۶۷</td>
</tr>
</tbody>
</table>

به کوردریت و کاهش شدت نسبی پیک‌های آلومینا، فورسیرت و کربنات هسته‌ای، بنابراین می‌توان پیک‌های گردانی مشاهده شده در دمای ۱۲۵۰ درجه سانتی‌گراد در محتوای آنالیز K مربوط به ترکیب آلومینیت است. درجه دما در دمای ۱۲۳۰ درجه سانتی‌گراد علاوه بر حضور پیک‌های فاز‌های آلومینا، فورسیرت و اسپینل، شاهد تشکیل فاز کوردریت (Mg۲Al۴Si۲O۱۲) در شرایط ۱۲۳۰ درجه سانتی‌گراد است. درجه دما در دمای ۱۲۳۰ درجه سانتی‌گراد علاوه بر حضور پیک‌های فاز‌های آلومینا، فورسیرت و اسپینل، شاهد تشکیل فاز کوردریت (Mg۲Al۴Si۲O۱۲) در شرایط ۱۲۳۰ درجه سانتی‌گراد است.
بزرگنمایی اصلی تکثیف کوردریت از نانوذرات سیلیس-کریستالمنیزیم-الومینیوم اکتیو

- استحالة سیلیس آمورف به کریستالیت در دمای
 1100°C
- تکثیف روش‌سیریت از واکنش بین اکسید منیزیم و
 کریستالیت در دمای
 1150°C
- افزایش مقدار تکثیف روش‌سیریت از طریق واکنش
 انسانتیت با اکسید منیزیم در دمای
 1290°C
- تکثیف اسپیت آلومینات منیزیم از طریق واکنش آلومینا
 با اکسید منیزیم در دمای
 1325°C
- تکثیف مولایت از طریق واکنش آلومینا با کریستالیت
 در دمای
 1330°C
- تکثیف کوردریت از طریق واکنش اسپیت آلومینات
 منیزیم با کریستالیت در دمای
 1330°C
- تکثیف کوردریت از طریق واکنش روش‌سیریت با
 کریستالیت و مولایت در دمای
 1330°C

تشکر و قدردانی

بدین وسیله از شرکت پیشناز ناونصعت شریف برای حمایت
مالی انجام شده از این بررسی قدردانی می‌گردد.

مراجع

[1] M. Kiani, T. Ebadzadeh, “Effect of
 mechanical activation and microwave
 sintering on crystallization and
 mechanical strength of cordierite
 41, pp. 2342-2347, 2015.

[2] A. Srivastava, V. Kumar Singh, V.
 Kumar, P. Hemanth Kumar, “Low

محیط برای تکثیف کوردریت یا مولایت است. از
یک تهویه با توجه به اینکه اندازه حرارتی در محیط هوا
انجام می‌شود، بنابراین منصفانه این تغییرات با توجه به اینکه افزایش
وژن مشاهده شده در آلاینده حرارتی متغیر با تکثیف
کوردریت و مولایت طبیعی است. این یافته را می‌توان در
ساختار شیبی کرتستالیت کوردریتی با مولایت
که در دمای باهنر تکثیف می‌شود اثربخشی زیادی
وکار دارد که با افزایش دمای عمیق حرارتی اکسیژن وارد
شیبی کوردریت با مولایت می‌شود.

SiO$_2$(s) + Al$_2$O$_3$(s) → Al$_2$SiO$_4$(s) (17)
2SiO$_2$(s) + 2Al$_2$SiO$_5$(s) + Mg$_2$SiO$_4$ →
Mg$_2$Al$_2$Si$_2$O$_7$(s) (18)
5SiO$_2$(s) + 2MgAl$_2$O$_4$(s) →
Mg$_2$Al$_2$Si$_2$O$_7$(s) (19)

در شکل 4 د تمثیلی از ریپساختار مخلوط پودر
کلسینی شده در دمای
1390°C نشان داده شده است. در
این تصویر می‌توان تشکیل دانه‌های کوردریت ریزشانه
به صورت مهم و همچنین تشکیل دانه‌های مولایت
به صورت سیلیس نشان داده شده است. در
تطبیق با نتایج آنالیز فازی شکل 3 است.

5- نتیجه‌گیری

مکانیسم تکثیف کوردریت از نانوذرات سیلیس، کریستال
منیزیم و الومینیوم اکتیو به صورت زیر است.
- استحالة کریستال منیزیم به اکسید منیزیم تا دمای
 440°C
- تکثیف انسانتیت با اکسید منیزیم و سیلس
 اکسید منیزیم تا دمای
 900°C

دوره 8 شماره 1 بهار 1398

“The thermal decomposition study of MgCl$_2$·6H$_2$O·1.4-C$_4$H$_8$O$_2$”, Chemical Engineering Research and Design, Vol. 104, pp. 256-263, 2015.

