بررسی تأثیر اصلاح سطحی بر خواص زیستی دی فازیک کلسیم فسفات

(HA/βTCP)

فرزاد کرمانی، عباس یوسفی، سعید کارگذار، زهرا طیانی نجاران، سحر ملایزاده بیدختی، محمد هادی مودی

1 دانشجوی کارشناسی ارشد مهندسی مواد، دانشگاه مهندسی مواد دانشگاه فردوسی مشهد، مشهد، ایران
2 دکتری مهندسی مواد، موسسه تحقیقاتی پرتو، ایران
3 استادیار، دبیرکنی علوم و فنون، دانشگاه علوم پزشکی مشهد، مشهد، ایران
4 استادیار، دبیرکنی علوم پزشکی مشهد، مشهد، ایران
5 استادیار، دبیرکنی علوم پزشکی مشهد، مشهد، ایران
6 استادیار، دبیرکنی علوم پزشکی مشهد، مشهد، ایران
7 Mollazadeh.b@um.ac.ir

چکیده:
از رویش کلسیم فسفات سازی می‌توان به عنوان یک روش ساده و ارزان برای سنتز نانوذرات اصلاح شده در مطالعه بیشتری از روش کلسیم فسفات سازی در مخلوط آب، روش و پلیر قطبی (ریو و او) برای سنتز ذرات دو فازی کلسیم فسفات (هیدروفوسیتیقن/آنتی/تی) کلسیم فسفات استفاده گردید. ذرات به‌دست آمده از این رویش برای کلسیم‌های زیستی تحت اصلاح سطحی با ترکیب آبی اذین سلنیدیک‌سیکل (تسوی) قرار گرفته، نشانه افزایش حاصل از استحکام، زود‌رنگی و ذرات نانوذرات XRD نشان دهنده دانه‌های کلسیم فسفات در کنار هیدروفوسیتیقن/آنتی بود. نتایج BET نشان دهنده موجودیت آگزیستوک سیلیکون و منتخلیو بودن ذرات با سطح هیدروفوسیتیقن/آنتی بود. نتایج نانوذرات دو فازی کلسیم فسفات، ذرات منتخلیو همراه با حسی اصلاح روش سازی به‌طور مستقیم مناسب و ساده برای سنتز نانوذرات کلسیم فسفات همراه به‌دید خواهد رشتی می‌باشد.

اطلاعات مقاله:
دریافت: ۳۰ آذر ۱۳۹۷
پذیرش: ۲۵ نور ۱۳۹۸

کلیدواژه:
کلسیم فسفات، اصلاح سطحی، ذرات دو فازی کلسیم فسفات، منتخلیو، همراه با حسی اصلاح سازی

۱- مقدمه
کلسیم فسفات‌ها کاربردهای گسترده‌ای زمین‌های علمی
بررسی تاثیر اصلاح سطحی بر خواص زیستی دی فازیک کلسیم فسفات

استخوان‌های دهان، فک، صورت، جراحی پستون فقرات و همچنین سیستم‌های دارویی به عنوان یک زمینه زیست فعل برای رساندن اعم درمانی به ناحیه‌های دور نظر است (دارندی [61]). اشکال مختلف کلسیم فسفات‌ها با توجه به نسبت مولی Ca/P از ترکیب HA; Ca_{10} (PO_{4})_6 (OH)_2 [3] با نسبت کلسیم به فسفر ۶/۷ (Ca/P = 1.67) تا گروه‌های می‌شود. در زمینه بایو مواد هیدروکسی آپاتیت (HA) با عنوان پایدارترین نوع کلسیم فسفات و یا ترکیب کلسیم فسفات (Ca/P = 5/۶) HA در یک انسان سیسی پایدارتر از \(\beta \)-TCP است. زیست تیخرید‌پذیری کامل گره‌پایی در بدن شیمی HA و ۱۰ سال به طول می‌انجامد. از سوی دیگر، \(\beta \)-TCP با عناوین دی فازیک کلسیم فسفات (biphasic \(\beta \)-TCP که به عنوان کلسیم ترکیبی (calcium phosphate) نتایج مطلب‌هایی خواهد داشت. از بستر های پیلمری استفاده شده در سنت هیدروکسی آپاتیت HA به عنوان PVA (پلیویول الکل) اشاره نمود (19-13). PVA یک پلمر قطعی محلول در آب با گروه‌های چینه PVA است. در غیاب بستر پیلمری CH 2 OH و CH 3 ,CH 2OH های کلسیم و فسفات در یک واکنش همگن باعث تشکیل کریستال‌های هیدروکسی آپاتیت می‌شود. ولی در حضور بستر پلرمی یک پویای بستر پلرمی پس از یونتیژاسیون گره‌های سطحی با ناحیه میکان‌های فعالی برای اتصال به کلسیم واکنش می‌آورد. آینیون فسفات

نیز به سمت این مکان ها توسعه یافته درون تشکیل هیدروکسی آپاتیت در یک واکنش غیر همگن از این سایت‌های فعل واکنش آغاز می‌شود. در نتیجه این نوع مدل کشت‌ناپایدار می‌شود. تشکیل هیدروکسی آپاتیت است. هیدروکسی آپاتیت با مولفه‌های سوئی در بسترها به‌شكل استاتیک تشکیل می‌شود. این اتفاق زمانی می‌افتد که بر نمی به عنوان سایت فعل برای بدن توانده خواهد قدرت \(\beta \)-TCP که به عنوان پایدارترین

در مطالعه بیشتر، ابتدا کلیسیم فسفات با روش گرانول‌سازی در حوزه‌ای قطعی حوزه‌ای و بستر پلمری پیویای و بدون حضور آینه با بستر شناخته می‌شوند. کلیه‌ی نمونه‌ها به کمک هیتر ۲۵ درجه و اون ۱۲۰ خشک‌شده و تاثیر ناحیه خشک‌کردن و همچنین ویژگی‌های اصلی سطحی در دماهای ۵۰ درجه به ویژه به ماده مورد بررسی قرار گرفته‌است. جهت بهبود خواص زیستی نمونه با کمرب مورد اصلاح سطحی قرار گرفت. جهت بررسی خواص باو مواد

دلیل ۸ شماره ۱ بهار ۱۳۹۸

۱۴
نتست سیمیت: سنبدسوزی سلولی ساپورت‌های رنگ‌ساختاری در
نمونه‌های انتخاب شده با استفاده از روش آب‌آماده‌سازی سیمیت بر اساس سیم‌های مولکول‌های سلولی 3T
(نیوتروبیت) به میزان 3000 سلول در هر خانه
پالت 96 کشت داده‌شد. سپس از این کشت‌ها در تغذیه
گذاری شد. بعد از ۴۳ ساعت غلظت‌سنجی در پالت اضافه
گردد. بررسی سیمیت نمونه‌ها با استفاده از رنگ‌سنجی
اتجار گردید. تعبیه میزان زندگی سلولی توسط دستگاه
Epoch device (USA)

نتست بازوی اکتیویت بی‌میسیسی: به منظور بررسی بازوی‌کنی بودن
نمونه‌ها ابتدا محلول SBF طبیعی روش کربو‌نیتریک تهیه شد.
مقدار ۷۵/۰۰۰۰۰۰ گرم از پودر انتخاب شده و اصلاح سطح شده
با توس در ۵ سی‌سی محلول SBF رخته شد و سپس در
دستگاه شبکه ساختار rpm ۶ و دما ۷۷ درجه قرار
گرفت. بعد از ۲۱ و ۲۴ روز محلول SBF از روی نمونه‌ها
برداشتند شد و مقدار ۱ سی‌سی استخوان به منظور توقف تست
روی پودر نیا به رخته شد و بعد از ۴ دقیقه استخوان برداشتند شد
و نمونه‌ها در آب به دلیل ۴۰ دقیقه به مدت ۱ ساعت کاملا
خشک گردید. به منظور بررسی میزان استخوان سازی
(MIRA3 – Ceska republika) نمونه‌ها از آنالیز (Band)
FTIR (Thermo Nicolet AVATAR 370, USA)

نتست الیزایی: به منظور بررسی میزان استخوان
سازی نمونه‌ها و بررسی میزان رسوب کلسیم و فسفر از
نتست الیزایی رد استفاده شد. نتست الیزایی در مطالعه
استاندارد و مطالعه کار منشأ شده پیشین [۱ روی سلول
(SaOS-۲) به تهیه‌گر استیتیز پاس] انجام پذیرفت.

نتست پایداری pH به منظور بررسی کاربرد ماده‌ی

نمونه تست‌های سخت‌سازی باوی اکتیویت، آلیزان رده و پایداری
پیچ برای نمونه‌های کلسیم ساختار دو فازی (HA+βTCP)
اصلاح سطح شده مورد بررسی قرار گرفت.

۲- فعالیت‌های تجربی

پروسهٔ سنتز با روشنگری سازی با استفاده از
پیش ماده‌های روش خوراکی، سخت‌سازی پلی‌ویل کلک
کلسیم فسفات و آمونیوم دی‌هیدروژن ساخته و همچنین
اصلاح سطحی با توس به مواد اولیه تهیه شده از برند مکک
متال‌پوشی کار منشأ (Merk, Germany) آلمن
شده پیشین [۱] صورت دیده‌رفت. به منظور تعیین فاز
XRd (X'Pert PW 3040/60 Philips) نمونه‌ها از آنالیز
استفاده گردید. تعبیه ثابت‌کننده، حجم شبکه و نیز کریستالات
سایز با آنالیز محسوب می‌گردد. شناسایی بند
Rietveld

Response surface طراحی آزمایش با مدل
به منظور تعیین نمونه با RSM

باالترون مقدار رزا پس از اصلاح سطحی از مدل
استفاده شد. نرم‌افزار (Design expert 9, USA)
منظور مورد استفاده قرار گرفت.

۱۵ دوره ۸ شماره ۱ بهار ۱۳۹۸
نتایج و بحث
3-1 آنالیز XRD

شکل 1 (الف) تغییرات فازی نمونه از آورنگ به پلارین را با افزایش دما نشان می‌دهد. مطالعه این شکل و فازیابی انجام شده در نمونه‌های شک شده در دمای پایین فقط فاز هیدروکسیدی آبی (Caco) قابل مشاهده است. با افزایش تا ۵۰۰ درجه شاهد ایجاد فاز بتنی کلسیم‌فسفات هستیم. نمونه عملیات حرارتی شده در دمای ۵۵۰ به منظور بررسی دقیقتر تحت آنالیز ریتولید قرار گرفت.

*سنتر شده در بدن نمونه‌ها در مرد ۱۲ و ۲۱ روز در مجاورت محيط بالینی SBF قرار گرفتند. pH محلول بالینی SBF قبل و بعد از حضور ماده سنتزی در پوزه‌های مشخص اندام‌های گیری شد. اندازه‌گیری pH توسط دستگاه بیونورمال (universal pH meter, USA) انجام گردید.

تست آماری: تمام آنالیزهای عدیدی شامل تست‌سمت، آنالیز زنا، استخوان سازی حذفی ۳ بار تکرار شد. این تست‌ها توسط آنالیز آماری (Graph pad prism 7.03 USA) توسط نرم‌افزار Two-way ANOVA مورد ارزیابی قرار گرفت.

می‌باشد. شکل 1 (ج) آزمون صحت سننی ریتویلد را نشان می‌دهد مطلق یان آزمون آنتی‌تند باید با انجام و فاز بای دقت است. (در میزان بافت و تغییر اتصال بافت و تغییر بافت.

جدول 1 - اطلاعات به‌دست آمده از آنتی‌تند

<table>
<thead>
<tr>
<th>درصد فازهای بلورین مشاهده‌شده</th>
<th>حجم</th>
<th>HA</th>
<th>β-TCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>300</td>
<td>6/53</td>
<td>489/54</td>
</tr>
<tr>
<td>1/8</td>
<td>1/16</td>
<td>84</td>
<td>16</td>
</tr>
</tbody>
</table>

مشروح: شکل 2 تصویر TEM آنتی‌تند را نشان می‌دهد و مطلق یان تصویر ذرات دارای مورفولوژی هگزاگونالی هستند. علت وجود ذرات مورفولوژی یا علاوه بر ساختار خود هیدروکسی آنتی‌تند به مکانیزم تشكل در حضور بستر پایلی‌می‌نیز مرتبط می‌شود. نحوه قرار‌گیری مولکول‌های پلیمری و اصلاح کننده‌ها می‌توانند ارثه‌ای که، مورفولوژی و پراکنده‌پذیری کریستال‌های هیدروکسی آنتی‌تند را کنترل می‌کند. فلکت‌اتر کرایه‌ای انجام می‌تواند با کننده‌ای کرایه‌ای انجام XRD نمونه نانو درآمده و نانو ساختار است.

شکل 2 - تصویر TEM نمونه [1,2]
طراحی آزمایش به صورت مقایسه‌ای و همکاری

با استفاده از مدل RSM (بررسی علت همیثت)

گرانول سازی به صورت درجا: ابتدا مدل سازی برای
نطاق دادن علت همیثت نحوه سنگیری با استفاده از روش و
بسته پلیمری نسبت به پژوهش‌های پیشین [5-1] مورد
استفاده واقع شد. نتایج این بررسی در شکل 3 (A)
نضال داده شده است. قسمت A نشانگر تاثیر آفزایش روغن
در تغییر اندازه ذرات در حضور و یا عدم حضور PVA است.
گراف A1 نشانگر تغییرات اندازه ذرات با آفزایش روغن
بدون حضور PVA است. کاهش قابل توجه افزایش ذرات با
افزودن روغن در این گراف مشاهده شد. مطابق این گراف
اندازه ذرات از 0/2 نانومتر به 30 نانومتر کاهش یافت. است.

درصد فازی با آفزایش مقادیر حضور و یا عدم حضور
روغن است. مطابق این گراف برای آفزایش بسته پلیمری
فاز 5 درصد است. حضور PVA به میزان 60 درصد است. مطابق گراف A2 با
آفزایش روغن به این سیستم اندازه ذرات از 0/2 به
35 نانومتر کاهش یافت. لذا طبق این گراف روغن باعث
کاهش اندازه ذرات با حضور و عدم حضور PVA
است. شکل نشانگر تاثیر آفزایش بسته پلیمری در تغییرات اندازه
ذرات در حضور و یا عدم حضور روغن است. گراف B1
تشابه تغییرات اندازه ذرات با آفزایش مقادیر
PVA به حضور روغن است. مطابق این گراف برای
بسته پلیمری اندازه ذرات از 0/2 به 35 نانومتر کاهش یافت. گراف C
تشابه تغییرات اندازه ذرات با آفزایش مقادیر
PVA به حضور روغن است. مطابق این گراف برای
بسته پلیمری اندازه ذرات از 0/2 به 35 نانومتر کاهش یافت.

روش بهینه اصلاح سطحی با مدل

RSM بهینه اصلاح سطحی یک روش برای

بهینه سازی دیسپلای با مقدار مناسب از

توزیع یک سیستم روش RSM مورد استفاده قرار گرفت. با

این مدل ذرات در حجم 0/35 نانومتر در تغییرات اندازه

ذرات به وسیله شکل نشانگر اصلاح سطحی واقع شدند و

مواد بهینه توسط اталیای آزمایشی به شکل نشانگر

اطلاعات بهینه استخراج شده از این مدل می‌باشد. مفوم

بررسی تاثیر اصلاح سطحی بر خواص زیستی الافراکردی فسفات (HA/βTCP)
ولی مشاهدات تجربی مقدار بهینه را ۲۵ درصد تعیین نمود.
انحراف این دو حالت بسیار کم می‌باشد. لازم به ذکر است
زیاد نمونه بدون اصلاح سطحی ۱±۰۲ بوده که در اثر
فراوری اصلاح سطحی به ۲۵/۰۴ رسیده است.

\[Zeta(\mu u) = \sqrt{4114.96664 - 780.08335x + 55.08990x^2 - 1.35631x^3 + 0.010029x^4} \] (1)

\[5 < x < 75 \quad x: \text{Si ion by weight percent} \]
مکانیزم اصلاح سطحی: شکل (۲) تصویر TEM نمونهٔ اصلاح سطحی شده با ۲۵ درصد و زنی توس را نشان می‌دهد. مورفولوژی ذرات هیدروکسی‌کلسیم کربنیک به همراه ذرات با مورفولوژی کروی کلنر آن که مربوط به فاز β-TCP است در شکل دیده می‌شود. در اثر اصلاح سطحی ذرات بسیار زیاد در اطراف ذرات قابل مشاهده است. مکانیزم اتصال ذرات به ذرات HA اینگونه است که ذرات تتوس بعد از هیدرولیز قطعیت منفی بیدار می‌کردند و با کلسیم موجود در ساختار هیدروکسی‌کلسیم واکنش می‌دهد و باعث ایجاد ذرات زیاد SiO2 می‌شود.

شکل ۵- نتایج تست سیمیت[۱]

تسنیم‌سیم: تست سیمیت سلولی برای نمونه‌ها با غلفظ‌های گوناگون شامل ۱۰۰، ۱۲۵، ۱۵۰ و ۲۰۰ درصد وری انجام گردید. نمونه محرک کشت بدون عصاره به عنوان کنترل- (بدون سیمیت) و نمونه شامل عامل سرم دکسسوروسین در دو غلفظ به عنوان کنترل + در نظر گرفته شد. نتایج تست نشانگر تغییر رنگ الامارلو به رنگ سبز متمایل به صورتی بسیار تمام خانه‌های دارای عصاره‌ای اضافه شده و کنترل منفی است. همچنین کنترل منفی به آبی تغییر رنگ داد. نتایج جذب زود به شکل (۶) نشان داده شده است. نتایج نشانگر این است که عصاره‌های تهیه کردن
سازی در داخل بدن برای بافت سخت اسپبس دیهه است. مطالعه این تست ۹۹ ذرات قابلیت پوشش دهی بر روی ایمپلنتها را دارا می‌باشد.

تست آلیزازین: شکل ۹- نتایج کمی سازی تست آلیزازین رد

په تابیداری pH تست با ایداری pH نمونه بعد از گذشته ۷، ۱۴ و ۲۱ روز قرار گیری نمونه در مجاورت محیط نشان می‌دهد. مطالعه این تست نمونه باعث تغییر pH محیط نشده و از این جهت کاربرد آن داخل بدن اشکالی ایجاد نمی‌کند.

نتایج تست با ایداری pH

شکل ۸- نتایج تست با ایداری pH

شکل ۷- نتایج تست آلیزازین رد[۱]
تشکر و قدردانی

نویسنده‌گان بر خود لازم می‌دانند از همکاری آزمایشگاه‌های مواد پیشرفته دانشگاه فردوسی مشهد، آزمایشگاه خورگدنی دانشگاه فردوسی مشهد، آزمایشگاه مرکزی دانشگاه علوم پزشکی مشهد و همچنین آزمایشگاه‌های گروه علوم و فنون دانشگاه علوم پزشکی مشهد، آزمایشگاه بایوپزشکی دانشکده داروسازی مشهد، آزمایشگاه میکروبیولوژی دانشکده داروسازی سازمان محیط و موسسه تحقیقاتی بیومکانیک و توانمندی از پرتوسیم چشم تیک در تشکر و قدردانی را داشته باشند.

تمامی آنتی‌ژن‌ها و تحلیل‌های مربوط به توسط XRD، تهیه‌سازی نمونه‌های اصلی انجام شده است. راه ارتقاء جهت این آنتی‌ژن‌ها ایمیل: FarzadKermani73@gmail.com می‌باشد.

مراجع

[2] فرزاد کرمانی، سهرار مللازاده بیدختی، زهرا طبرانی نجاران، سید کریم زارداری، عباس پوروف، محمد‌هدی موبد، اطلاع‌رسانی همکاری روزنامه‌نگارانی ایرانی (۱۳۹۵)۱۴۸۴-۱۳۹۵، ۱۴۸۴-۱۳۹۵، ۱۴۸۴-۱۳۹۵

با عنوان "معرفي روزنامه‌نگارانی ایرانی ایرانی" می‌باشد.

دی‌گر-۱۲۷

شماره ۱ یک‌باره ۱۳۹۸

