افزایش تشکیل زیرکونیات تراگونال در سیتر و اکنشی آلومینا و زیرکن

هوهسا مجدیان،* بیلا نیکرادر

استادار، هیئت علمی پژوهشگاه مواد و انرژی

* h-majidian@merc.ac.ir

اطلاعات مقاله:
دریافت: 1397 بهمن
پذیرش: 1398 تیر

کلمه وارده:
ژیکریتوییت تراگونال سیتر
و اکنشی آلومینا-ژیرکن-ماکرویور

1- مقدمه

یکی از مباحث مهم در سرامیک‌های دارای زیرکن، بحث پایدارسازی زیرکونیات تراگونال است. در هنگام سرد کردن در حوای دمای 1100 درجه سانتی‌گراد، زیرکونیات تراگونال در زمینه محسوس نشود، به زیرکنیات منکنینک استحالة تکرد و تحت تنش، در ساختار تراگونال باقی خواهد ماند. هنگامی که تکریک به این ذرات برخوردار کند، تنش آزاد شده و انرژی ترک را جذب می‌کند. این امر موجب بهبود ویژگی‌های آلومینا به‌خصوص افزایش چرخش کامپوزیت‌های سازوکار استحالة فازی خواهد شد [1].

بسیاری از سرامیک‌های زیرکونیایی، از فرایند سیتر و اکنشی آلومینا و زیرکن تهیه می‌شوند. قطعات مختلفی بر تبدیل زیرکونیات تراگونال در این فرایند دخیل هستند. به عنوان مثال، اگر اندازه ذرات زیرکن بزرگ باشد یا کسر حجمی زیرکونیا زیاد باشد به‌طوری که ذرات آن به یکدیگر پسند و دانه‌های درشتی را تشکیل دهد، مقدار زیرکونیات تراگونال در محصول کم می‌شود [2]. همچنین کامپوزیت‌های که دچاری پستری داشته باشند، احتمال باقیماندن زیرکونیا به قرم تراگونال در آن بیشتر است [3]. زیرا هرچه چگالی ساختار پستری
افزایش تشکیل زیرکوینی تراگونال در سیتر و اکشنی آلومینا و زیبرن

باشند، دانه‌های زیرکنی تراگونال بیشتر در میان آنها محبوس شده و قطر بیشتری بر آنها وجود دارد; بنابراین امکان استحالة آنها به زیرکنی منقح‌لینک کمتر می‌شود [4]. از سویی هرچه دمای سیتر کامپوزیت کمتر باشد احتمال حضور زیرکنی تراگونال نیز در آن بیشتر می‌شود [5].

در این پژوهش، تلاش شد تا تشکیل فاز زیرکوینی تراگونال در سیتر و اکشنی آلومینا و زیبرن بررسی شود تا عوامل موثر بر افزایش مقدار این فاز بود استفاده از افزودن تا شناخته گردید. سعی ممکن ماند مدل سیتر، نوع حرارت‌هایی که واروند در رابطه با سیتر توسط ماپکوپنیو اوایلی بررسی شد. از آنجا که خورش زیرکوینی تراگونال در افزایش شکم‌زدایی کامپوزیت‌های آلومینا-مولایت-زیرکوینا نقش مهمی دارد، مقدار این فاز اندوه‌گری و همچنین چگالی و استحکام کامپوزیت‌ها بررسی شد.

2- فعالیت‌های تجاری

از پویاز آلومینا با شناسه 70 از شرکت مارتنز ورک MR70 آلمن و سیترن با شناسه 5 از شرکت Zircosil انتخاب و نمونه‌سازی وپویاز آلمن با شناسه 64 از شرکت Janssen منطقه‌ای به اندازه‌های بیش از 1/15 میکرومتر استفاده شد. برای همگی سه‌گانه مواد اولیه از افزودن دولپایکس شکری چنر و اند شوارتز آلمنا با شناسه 64-64 شرکت دلپایکس-CE در انتخاب شد. آلمنا و سیترن با نسبت وزنی 55:45 به 15 و 40٪ وزنی دولپایکس در ماده خشک به صورت دستی مخلوط شدند. سپس مخلوط پودرها با یکدیگر در آسیب‌های توسط کلول‌های آلومینیا با دور ۲۵۰ بیشتر تضمین ۲۰ دقیقه، ۱ و ۲ دوره ۵۸ شماره ۱ بهار ۱۳۹۸ ۵۲
جدول 1- شناسه کامپوزیت‌های آلومینا-مولایت-زبروکنیا تهیه شده با روش‌های گوناگون

<table>
<thead>
<tr>
<th>شناسه زمان آسیاب</th>
<th>زمان سنتر</th>
<th>نوع حرارت‌دهی</th>
<th>دما سینتر (C)</th>
<th>مولار</th>
<th>نمونه اولیه</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۲۰ دقیقه</td>
<td>۱۲۰ دقیقه</td>
<td>۱۲۰ دقیقه</td>
<td>۱۲۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۲</td>
<td>۱۳۰ دقیقه</td>
<td>۱۳۰ دقیقه</td>
<td>۱۳۰ دقیقه</td>
<td>۱۳۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۳</td>
<td>۱۴۰ دقیقه</td>
<td>۱۴۰ دقیقه</td>
<td>۱۴۰ دقیقه</td>
<td>۱۴۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۴</td>
<td>۱۵۰ دقیقه</td>
<td>۱۵۰ دقیقه</td>
<td>۱۵۰ دقیقه</td>
<td>۱۵۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۵</td>
<td>۱۶۰ دقیقه</td>
<td>۱۶۰ دقیقه</td>
<td>۱۶۰ دقیقه</td>
<td>۱۶۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۶</td>
<td>۱۷۰ دقیقه</td>
<td>۱۷۰ دقیقه</td>
<td>۱۷۰ دقیقه</td>
<td>۱۷۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۷</td>
<td>۱۸۰ دقیقه</td>
<td>۱۸۰ دقیقه</td>
<td>۱۸۰ دقیقه</td>
<td>۱۸۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۸</td>
<td>۱۹۰ دقیقه</td>
<td>۱۹۰ دقیقه</td>
<td>۱۹۰ دقیقه</td>
<td>۱۹۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۹</td>
<td>۲۰۰ دقیقه</td>
<td>۲۰۰ دقیقه</td>
<td>۲۰۰ دقیقه</td>
<td>۲۰۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۱۰ دقیقه</td>
<td>۲۱۰ دقیقه</td>
<td>۲۱۰ دقیقه</td>
<td>۲۱۰ دقیقه</td>
<td>نمونه اولیه</td>
<td>کوره معمولی</td>
</tr>
</tbody>
</table>

تجزیه زیرکن به صورت همزمان انجام می‌شود؛ در نتیجه سیترزنی مخلوط پودرهای آلومینا و زیرکن به سختی امکان پذیر است [7]. کامپوزیت ۱ نمونه اولیه‌ای است که مقادیر زبروکنیا تراگونال کم (۴٪) و استحکام مناسب دارد. در کامپوزیت ۲ که زمان آسیاب کردن مواد اولیه افزایش داده شده به‌پایه قوی در خواص مشاهده می‌شود. مقدار زبروکنیا تراگونال دو برابر شده و استحکام بسیار افزایش یافته است. در ترکیب فازهای شناسایی شده در کامپوزیت ۲ (دما ۱۵۰ درجه، کوره معمولی)، تنهای فازهای آلومینا، مولایت و زبروکنیا وجود داشت و زبرکن دیده نشد. افزایش دما سنتر در کوره معمولی موجب بهبود سینتر و استحکام مکانیکی شد و لی بر مقدار زبروکنیا تراگونال تأثیری نداشته است.

۳- نتایج و بحث

در این بیانیه، تأثیر زمان آسیاب کردن مواد اولیه، تأثیر دما سنتر و تأثیر نوع سینتر (حرارت‌دهی با ماکروویو) بررسی شده است. در جدول ۲ درصد زبروکنیا تراگونال، تخلف ظاهری و استحکام خمشی کامپوزیت‌های آلومینا-مولایت-زبروکنیا تهیه شده اروره شده است. شکل ۱ نیز الگوی برای پرتو ایکس از کامپوزیت‌های تهیه شده (نمودن شماره ۴) را به عنوان نشان دهنده الگوی خشکی XRD کامپوزیت‌های کاملاً شیب بوده و تهاش شدت (SEM) پیک‌ها متفاوت بود. تصاویر میکروسکوپ الکترونی بهتری (از ریزساختار) چند نمونه از کامپوزیت‌های تهیه شده نیز در شکل ۲ اروره شده است.

گزارش شده که تهیه کامپوزیت‌های چگال مولایت-زبروکنیا با مشکلاتی همراه است، زیرا سنتر شدن و
جدول ۳- مقدار زیرکونیای تتراگونال، تخلخل ظاهری و استحکام خشی کامپوزیت‌های آلومینا‌مولایت-زیرکنی

<table>
<thead>
<tr>
<th>شناسه زیرکونیای تتراگونال (%)</th>
<th>تخلخل ظاهری (%)</th>
<th>استحکام خشی (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>۱۰/۶</td>
<td>۱۷۸</td>
</tr>
<tr>
<td>۲</td>
<td>۱۲/۶</td>
<td>۳۱۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۱/۶</td>
<td>۳۸۶</td>
</tr>
<tr>
<td>۳</td>
<td>۴/۶</td>
<td>۴۸۱</td>
</tr>
<tr>
<td>۵</td>
<td>۵/۶</td>
<td>۲۰۵</td>
</tr>
<tr>
<td>۷</td>
<td>۲۱/۶</td>
<td>۲۵۸</td>
</tr>
<tr>
<td>۹</td>
<td>۴/۹</td>
<td>۳۸۳</td>
</tr>
<tr>
<td>۸</td>
<td>۴/۲</td>
<td>۴۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱/۵</td>
<td>۴۴۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱/۳</td>
<td>۳۶۰</td>
</tr>
</tbody>
</table>

شکل ۱- الگوی پراش پرتو ایکس کامپوزیت شماره ۳: آلومینا، M: مولایت، Zm: زیرکونیای منوکلینیک و Z1: زیرکونیای تتراگونال
شکل ۲- ریزساختار کامپوزیت آلومینا-مولاپت-زیرکونیا نهایی شده (الف) نمونه ۱، (ب) نمونه ۳، (ج) نمونه ۴ و (د) نمونه ۷ و ۸) آنالیز EDS فازها در تصویر ب
حوزر زیرکونیای تتراگونال در سیستم واکنشی میان آلومینا و زیرکن، اندازه ذرات مواد اولیه، دمای سیبتر کمتر و چگالی بهتر کامپوزیت ذکر شد. لی و همکارش [9] گزارش کردن که بهتر از فاصله کم که گوشه مایکرویوب باقی مانده مقدار مقادیر فاصله این تهیه شده در کوره مومولو و در کوره مایکرویوب نشان می‌دهد که مقادیر فاصله کم شیائی تتراگونال در نمونه تهیه شده با کوره مایکرویوب بیشتر است ولی در نمونه‌های تهیه شده با کوره مومولو مقدار مولاپت بیشتر تشکیل شد. استحاله زیرکونیای تتراگونال به مکملینیک وابسته به چگالی زیمنیوم، مدا و اندازه دانه است: هرچه چگالی زیمنیوم کمتر باشد، دمای سیبتر بالاتر باشد و یا اندازه دانه‌های زیرکنیا بیشتر باشد، استحالت آن به مکملینیک سریعتر روی می‌دهد [10]. از آنجا که در کوره مایکرویوب دما کمتر است می‌توان اندازه زیرکونیای تتراگونال بیشتری را داشت. مطالعه در مورد ترکیب فاز این نوع کامپوزیت‌ها نشان داده است که مقادیر زیمنیوم باعث توزیع اندازه ذرات مواد اولیه نیز بستگی دارد [11]. علت تشکیل بیشتر فاز مولاپت در کوره مومولو را می‌توان به دلته تنر بودن زمان سیبتر آن نسبت داد. در نتیجه نمود تشکیل مولاپت زمان‌بند بیشتر یا همچون توجه است که زمان سیبتر در مایکرویوب بسیار کم است (1 دقیقه) و همین عامل موجب شد تا نمونه‌ها به چگالی کامل ترسند و استحکام کمتری نسبت به نمونه‌های سیبتر شده در کوره مومولو داشته باشند. افزایش زمان سیبتر تا حدی‌کن (60 دقیقه) موجب بهبود سیبتر و استحکام مکانیکی شد و این نتیجه‌ها نشان دادند که نمونه‌های ۶ و ۷ افزایش دهد از جمله عوامل موثر بر
در صورت استفاده از گازارش مایکروویو برای سیتر کامپوزیت‌های آلومینا-مولایت-زیروکنیا، مقدار زیرکونیای تراگونال بیشتر نسبت به کوره معمولی تشکیل خواهد شد ولی به علت زمان سیتر کمتر، چگالی و استحکام نمونه‌های تهیه شده در مایکروویو، از نمونه‌های تهیه شده در کوره معمولی کمتر گزارش می‌شود.

جهت افزایش زیرکونیای تراگونال، بهینه زمان آسیاب کردن مواد اولیه در سیتر و اکتشی آلومینا-زیرکنک ۲ ساعت، بهینه دما و زمان سیتر با کوره معمولی ۱۴۰۰ درجه به مدت ۳ ساعت و بهینه دما و زمان سیتر با مایکروویو ۱۶۰۰ درجه به مدت ۱ ساعت گزارش می‌شود.

مراجع


