افزایش تشکیل زیرکونیات تراگونال در سینتر و اکتشی آلومینا و زیرکن

هوشناس مجدیدان، *، بیلا نیکراز

استادار، هیأت علمی پژوهشگاه مواد و انرژی

* h-majidian@merc.ac.ir

اطلاعات مقاله:

دریافت: ۱۳۹۷ پذیرش: ۱۳۹۸

کلید واژه: زیرکونیات تراگونال سینتر و اکتشی، آلومینا-زیرکن، ماکروویو

1- مقدمه

یکی از مباحث مهم در سرامیک‌های دارای زیرکنیا، بیش از پایداری‌زیکرکیان تراگونال است. در هنگام سرد کردن در هوا در محدوده ۱۱۰۰، اگر بلورهای زیرکنیا تراگونال در زمینه محسوس باشند، به زیرکنیاه مکانیک استحالت نکرد و تحت تنش، در ساختمان تراگونال باقی خواهد ماند. هنگامی که تراگونال به ذرات درخشید کند، نش آزاد شده و انرژی تراگونال را جذب می‌کند. این امر موجب بهبود ویژگی‌های آلومینا که بیشتر افزایش چربی کامپوزیت‌های سازوکار استحالت فازی خواهد شد [۱].

بعد از پژوهش کلاش‌ش، تا عموم موتر بر تشکیل و افزایش فاز زیرکونیات تراگونال در سینتر و اکتشی میان آلومینا و زیرکن بررسی شده، در این بررسی مولکول‌های آلومینا و زیرکن با نسبت ۸۰ به ۲۰ درصد وزنی مخلوط و در شرایط مختلف سنتر شدند. دمای سنتر (۱۵۰۰ د م ۱۶۰۰ د م) درجه سانتی‌گراد، نوع کوره (معمولی و ماکروویو) و زمان آسیب کردن مواد اولیه (۵۰/۱۰ و ۳ ساعت) در این پژوهش بررسی شده.

فاز زیرکونیات تراگونال با استفاده از روش آنالیز شبه کمی از روی الگوهای پرایو ابکس کامپوزیت‌ها اندازه‌گیری و در نمونه‌ها مقایسه شد. همچنین تخلخل، برقراری و استحکام کامپوزیت‌های تهیه شده با یکدیگر مقایسه شد. نتایج نشان داد که افزایش زمان آسیب مواد اولیه و یا استفاده از ماکروویو محلی (فاز) تشکیل زیرکونیات تراگونال می‌باشد و این افزایش دمای سینتر تنها در تشکیل این فاز تأثیر گذاشت.
افزایش تشکیل زیروکنیا تتراگونال در سیتمر و اکنشی آلومینا و زیرکن

باشند، دانه‌های زیرکنیا تتراگونال بیشتر در میان آنها محبوب شده و فشار بیشتری بر آنها وجود دارد؛ بنابراین امکان استحالة آنها به زیرکنیا مولکولیک ممکن می‌شود [4]. از سویی هرچه دمای سیتمرت کامپوزیت شکر باشد احتال حضور زیروکنیا تتراگونال نیز در آن بیشتر می‌شود [5].

در این پژوهش تلاش شد تا تشکیل فاز زیرکنیا تتراگونال در سیتمرت و اکنشی آلومینا و زیرکن بررسی شود. تا عوامل موثر بر افزایش مقدار این فاز بدون استفاده از افزودن شیلات گردد. سه عامل مهم دمان دنیا، بودن حرارت دهی، و عوامل دیگر، مقدار این فاز از این دنیا کاهش و دریافت کمیابی کامپوزیت هر برسی شد.

۲- فعالیت‌های تجربی

از پودر آلومینا با شناسه ۷۰ MR از شرکت مارتنیز ورک به چگالی ۷۰ آلمن و زیرکن با شناسه ۵ Zircosil از شرکت جانسون‌ماتیک با انرژی شکر به ۱/۵ و ۱/۱۵ میکرون استفاده شد. برای همگی سه مورد اولیه از افزودن دولاسیک شکر چپم اند شوارتر آلمن با شناسه ۶۴ Dolapix CE-64 استفاده شد. آلومینا و زیرکن با نسبت وزنی ۸۵/۱۵ و ۷۵/۲۵ در میلی‌گرام در یک کلم دهی خشک به صورت دستی مخلوط شدند. سپس مخلوط پودرها با یکدیگر در اسپیس ماهواره‌ای توسط گلوله‌های آلومینیای با دور ۲۵۰ به مدت زمان‌های ۱۰ دقیقه، ۳ و ۵ دقیقه.
جدول ۱ - شناسه کامپوزیت‌های آلومینا–موالیت–زیرکونیای تهیه شده با روش‌های گوناگون

<table>
<thead>
<tr>
<th>شناسه</th>
<th>زمان آسیاب (ساعت)</th>
<th>نوع حرارت‌دهی</th>
<th>دمای سینتربه (°C)</th>
<th>عامل مورد بررسی</th>
<th>نمونه اولیه</th>
<th>تأثیر دمای سینتربه معمولی</th>
<th>کوره معمولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱ دفیقه</td>
<td>۳ ساعت</td>
<td>۱۶۵۰</td>
<td>نمونه اولیه</td>
<td>۲</td>
<td>۲ دفیقه</td>
<td>۱۶۵۰</td>
</tr>
<tr>
<td>۲</td>
<td>۲ دفیقه</td>
<td>۳ ساعت</td>
<td>۱۵۵۰</td>
<td>کوره معمولی</td>
<td>۳</td>
<td>۳ دفیقه</td>
<td>۱۶۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۳ دفیقه</td>
<td>۴ ساعت</td>
<td>۱۶۰۰</td>
<td>مایکروویو</td>
<td>۴</td>
<td>۴ دفیقه</td>
<td>۱۵۰۰</td>
</tr>
<tr>
<td>۴</td>
<td>۱ دفیقه</td>
<td>۱ ساعت</td>
<td>۱۵۰۰</td>
<td>تأثیر زمان آسیاب کردن و مایکروویو</td>
<td>۵</td>
<td>۵ دفیقه</td>
<td>۱۶۰۰</td>
</tr>
<tr>
<td>۵</td>
<td>۲ دفیقه</td>
<td>۱۵۵۰</td>
<td>مایکروویو</td>
<td>تأثیر زمان آسیاب کردن و مایکروویو</td>
<td>۶</td>
<td>۶ دفیقه</td>
<td>۱۵۰۰</td>
</tr>
</tbody>
</table>

تجزیه زیرکن به صورت همزمان انجام می‌شود؛ در نتیجه سیستم‌پذیری مخلوط بوده‌های آلومینا و زیرکن به سختی امکان پذیر است [۷]. کامپوزیت ۱، نمونه اولیه‌ای است که مقدار زیرکونیای تتراگونال کم (۴٪) و استحکام مناسبی دارد. در کامپوزیت ۲ که زمان آسیاب کردن مواد اولیه افزایش داده شده به‌دست خویش در خواص مشاهده می‌شود. مقدار زیرکونیای تتراگونال دو برابر شده و استحکام بسیار افزایش یافته است. ترکیب فازهای شناختی شده در کامپوزیت ۲ (دمای ۱۵۵۰ درجه سانتی‌گراد) دارای توانایی آلومینا، مولیت و زیرکونیا وجود داشت و زیرکن دیده نشد. افزایش دمای سینتربه در کوره معمولی موجب بهبود سینتربه و استحکام مکانیکی شد و بر مقدار زیرکونیای تتراگونال تأثیری نداشته است.

۳- نتایج و بحث

در این پژوهش، تأثیر زمان آسیاب کردن مواد اولیه، تأثیر دمای سینتربه و تأثیر نحوه سینتربه (حرارت‌دهی با مایکروویو) بررسی شده است. در جدول ۲ درصد زیرکونیای تتراگونال تخلخل ظاهری و استحکام خمشی کامپوزیت‌های آلومینا–موالیت–زیرکونیای تهیه شده ارائه داده شده است. در نمونه شماره ۴، را به عنوان مثال نشان می‌دهد. انگوی کامپوزیت‌های کاملاً شیب هم بوته و تهیه شده XRD پیک‌ها متقابل بود. تصاویر میکروسکوب الکترونی روبشی (SEM) از ریزساختار چند نمونه از کامپوزیت‌های تهیه شده نیز در شکل ۲، ارائه شده است. گزارش شده که تهیه کامپوزیت‌های چگال مولیت–زیرکونیا با مشکلاتی همراه است، زیرا سینتربه و

درجه حرارت (رطوبت) و جریان (سیستم‌پذیری).

در نتیجه، این پژوهش نشان می‌دهد که با استفاده از روش‌های رحیمی مرحله‌ای، می‌توان بهبود مکانیکی و پیوندی میکرو‌ساختاری مواد تهیه شده را افزایش داد.

۱۶۵۰ دمای سینتربه (°C) | نمونه اولیه | ۲ دفیقه | ۱۶۵۰ |
۱۵۵۰	تأثیر دمای سینتربه معمولی	۳ ساعت	۱۶۰۰
۱۵۰۰	ثابت کوره معمولی	۴ ساعت	۱۵۰۰
۱۵۰۰	مایکروویو	۵ ساعت	۱۶۰۰
۱۵۵۰	تأثیر زمان آسیاب کردن و مایکروویو	۱۵۵۰	

۱۶۰۰ دمای سینتربه (°C) | نمونه اولیه | ۲ دفیقه | ۱۶۵۰ |
۱۵۵۰	تأثیر دمای سینتربه معمولی	۳ ساعت	۱۶۰۰
۱۵۰۰	ثابت کوره معمولی	۴ ساعت	۱۵۰۰
۱۵۰۰	مایکروویو	۵ ساعت	۱۶۰۰
۱۵۵۰	تأثیر زمان آسیاب کردن و مایکروویو	۱۵۵۰	
جدول ۳- مقدار زیرکونیای تتراگونال، تخلخل ظاهری و استحکام خم‌شیتی کامپوزیت‌های آلومینا-مولیت-زنک

<table>
<thead>
<tr>
<th>شناسه زیرکونیای تتراگونال (%)</th>
<th>تخلخل ظاهری (%)</th>
<th>استحکام خم‌شیتی (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۹/۸</td>
<td>۱۷۸</td>
</tr>
<tr>
<td>۲</td>
<td>۱۱/۱</td>
<td>۳۱۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۹/۸</td>
<td>۳۸۶</td>
</tr>
<tr>
<td>۴</td>
<td>۴/۹</td>
<td>۴۸۱</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۲۰۵</td>
</tr>
<tr>
<td>۶</td>
<td>۳۱</td>
<td>۲۵۸</td>
</tr>
<tr>
<td>۷</td>
<td>۴/۲</td>
<td>۳۸۳</td>
</tr>
<tr>
<td>۸</td>
<td>۶</td>
<td>۴۰۰</td>
</tr>
<tr>
<td>۹</td>
<td>۱۵</td>
<td>۴۴۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۹</td>
<td>۳۶۰</td>
</tr>
</tbody>
</table>

شکل ۱- الگوی پراش پرتو ایکس کامپوزیت شماره ۳: آلومینا، M: مولیت، Zm: زیرکونیای مونوکلینیک و Zt: زیرکونیای تتراگونال
شکل ۲- ریزساختار کامپوزیت آلومینا-مولاپت-زیکونیا به شده (الف) نمونه ۱، (ب) نمونه ۴، (ج) نمونه ۶ و (د) نمونه ۷ و (ه) آنالیز EDS فازها در تصویر ب
حضور زیرکوپتای تتراگونال در سینت و اکتشی میان آلومینا و زبرک، انتظار ذرات مواد اولیه، دمای سینت کمتر و چگالی بیشتر کامپوزیتی دارند. در نیمایش [9] گزارش کردن که بخشی از فاز زیرکوپتای دما با حرارت به دنبال گرایش ماکرواسکولار تکستر مقدار 5 میکرسی (5٪ وزنی) دارد و در این دمای زیرکونیا تراگونال (5٪ وزنی) سنتر 1500 درجه تجزیه نشده است. در دمای سینت 1550 و 1600 درجه تجزیه زیرکوپتای تراگونال نشان می‌دهد که مقدار فاز زیرکوپتای تراگونال در نمونه تهیه شده با کوره ماکرواسکولر بیشتر است ولی در نمونه تهیه شده با کوره معمول مقدار مولیت بیشتر تشکیل شد. استحال زیرکوپتای تراگونال به مکرواسکول وایسته به چگالی زیرکوپتای سنتری را داشت. مطالعه در صورت ترکیب فاز این نوع کامپوزیتی نشان داده است که مقدار زیرکوپتای بیشتری به توزیع اندازه ذرات مواد اولیه اضافه می‌شود که تجزیه زیرکوپتای کامل باشد و واکنش‌ها نیز تکمیل شده باشد.

در نمونه تهیه شده با ماکرواسکولر مقدار زیرکوپتای تراگونال بیشتری نسبت به کوره معمول دیده شد. قابل توجه است که زمان سینت در ماکرواسکولر بسیار کم است (1 دقیقه) و همین عامل موجب شد تا نمونه‌ها به چگالی کامل ترسیدن و استحکام کمتری نسبت به نمونه‌های سینت تهیه شده در کوره معمول داشته باشند. افزایش زمان سینت تا حدیمکان (90 دقیقه) موجب بهبود سینت و استحکام مکانیکی شد ولی نتوانست تشکیل فاز زیرکوپتای تراگونال را مانند نمونه‌های 6 و 7 افزایش دهد. از جمله عوامل موثر بر

\[
\begin{align*}
\text{ZrSiO}_4 &= \text{SiO}_2 + \text{ZrO}_2 \\
\text{3Al}_2\text{O}_3 + 2\text{SiO}_2 &= \text{Mullite (3Al}_2\text{O}_3, 2\text{SiO}_2) \\
(3+x) \text{Al}_2\text{O}_3 + 2\text{ZrSiO}_4 &= x\text{Al}_2\text{O}_3 + \text{Mullite (3Al}_2\text{O}_3, 2\text{SiO}_2) + 2\text{ZrO}_2
\end{align*}
\]
در صورت استفاده از حاویت‌دهنگاره مایکروووی برای سینتر
- کامپوزیت‌های آلومینا-مولیت-زیرکونیا، مقدار
زیرکونیای تراگونال بیشتر نسبت به کوره معمولی
تشکیل خواهد شد و به علت زمان سیلری، کمتر
چگالی و استحکام نمونه‌های تهیه شده در مایکروووی از
نمونه‌های تهیه شده در کوره معمولی کمتر گزارش
می‌شود.

- جهت افزایش زیرکونیای تراگونال، بهینه زمان آسیاب
کردن مواد اولیه در سینتر و اکتشی آلومینا-زرکون، ۳
ساعت، بهینه دما و زمان سیلری با کوره معمولی
۱۴۰۰ درجه به مت ۳ ساعت و بهینه دما و زمان
سیلری با مایکروووی، ۱۶۰۰ درجه به مت ۱ ساعت
گزارش می‌شود.

مراجع

[1] C. Aksel, "The Influence of Zircon on the
Mechanical Properties and Thermal
Shock Behavior of Slip-cast Alumina–
mullite Refractories", Materials Letters,

[2] H. M. Jang, S. M. Cho, K. T. Kim,
"Alumina–mullite–zirconia Composites,
Part II- Microstructural Development and
Toughening", Journal of Materials

"The Effect of Nano–TiO₂ Addition on the
Properties of Mullite–Zirconia Composites
Prepared by Slip Casting", Science of Sintering,

Thevenot, “Elaboration of Ceramics
Composites in the System Alumina-
Mullite-Zirconia”, Euromat Conference,

