افزایش تشکیل زیرکونیات ترترگونال در سیتی و واکنش آلومینا و زیرکن

هوذسا مهجدیان،* بیلاینیکار

استادار، هیأت علمی پژوهشگاه مداد و انرژی

* h-majidian@merc.ac.ir

اطلاعات مقاله:

دریافت: ۱۳۹۷ پذیرش: ۱۳۹۸

کلیدواژه:
زیرکونیات ترترگونال سیتی
واکنش آلومینا-زرکون، ماکروویو

چکیده:
در این پژوهش کلاه‌سنگ تا عوامل مؤثر بر تشکیل و افزایش فاز زیرکونیات ترترگونال در سیتی واکنشی میان آلومینا و زیرکن بررسی شود. این بررسی مراحلی بوده که شامل دو نیاز به نیزه گردی و در شرایط مختلف سیتی می‌باشد. نیزه گردی (معمولاً و ماکروویو) و میان آلومینا و زیرکن کاربرد مداوم دارد. این پژوهش بررسی می‌شود که فاز زیرکونیات ترترگونال با استفاده از روش آنتی‌تایپ کمیک از روش آنتی‌تایپ برای بررسی قابلیتی کامپوزیت‌ها اندازه‌گیری و در نهایت با استفاده از ماکروویو پدیده‌ها محقق شده و موج‌ها، افزایش فاز ترترگونال مشاهده شده و با پیک‌گیری مقایسه شد. نتایج نشان داد که افزایش میان آلومینا و زیرکن با استفاده از ماکروویو موجب افزایش تشکیل زیرکونیات ترترگونال در سیتی و واکنش دمای سیتی تأثیری بر تشکیل این فاز ندارد.

1- مقدمه
یکی از مباحث مهم در سرامیک‌های دارای زیرکن، بیان‌دارسازی زیرکونیات ترترگونال است. در هنگام سرد کردن در حوالی دمای ۱۱۰۰ درجه سانتی‌گراد به دلیل تغییرات لیتوژنیک سطحی هنگام که ترکیب به درون ذرات پربرودید کند، تنش آزاد شده و انرژی ترک را جذب می‌کند. این امر موجب بهبود ویژگی‌های آلومینا به‌ویژه افزایش اکستریال چم‌پرکی کامپوزیت تیپ سازوکار استحالت‌هایی خواهد شد. [۱]
افزایش تشکیل زیبرکنیای تتراگونال در سیمنت واکنش آلومینا و زیبرکن

باشند، دانه‌های زیبرکنیای تتراگونال بیشتر در میان آنها محبوب شده و فشار بیشتری بر آنها وجود دارد؛ بنابراین امکان استحلا به آنها می‌تواند کمتر باشد [4]. از سویی هرچه دمای سیمنت کامپوزیت کمتر باشد احتمال حضور زیبرکنیای تتراگونال نیز در آن بیشتر می‌شود [5].

در این بیانات طالش شد تا تشکیل فاز زیبرکنیای تتراگونال در سیمنت واکنش آلومینا و زیبرکن بررسی شود تا امکان حضور زیبرکنیای تتراگونال در افزایش قارچ‌های کامپوزیت‌های آلومینا-مولایت-زیبرکنیا نقش مهمی دارد، مقدار این فاز اندراگیری و همچنین چگالی و استحکام کامپوزیت‌ها بررسی شد.

۲- فعالیت‌های تجاربی

از روی آزمایش MR70 از شرکت مارتينز ورک آلومینا و زیبرکن با شناسه ۵ Zircosil ۴ از شرکت جانسرن۵ ماتی ایتالیا با اندازه ذرات به ترتیب ۱/۴ و ۱/۵ میکرومتر استفاده شد. برای همگن سایر مواد اولیه از افزودن دولپایکس شرکت چیم‌جران آلومینا با شناسه ۶۴ Dolapix CE-۶۴ استفاده شد. آلومینا و زیبرکن با نسبت وزنی ۸۵ به ۱۵ و ۰/۵۰٪ وزن دولپایکس در سه باکه به صورت دستی مخلوط شدند. سپس مخلوط پودرها با یکدیگر در آسیاب ماهواره‌ای توسط گریه‌های آلومینیا با دور ۲۵۰ به مدت زمان ۴۰ دقیقه، ۱ و ۳

دورة ۵۲ شماره ۱ بهار ۱۳۹۸
جدول ۱- شناسه کامپوزیت‌های آلومینا-مولایت-ژیوکنیا تهیه شده با روش‌های گوناگون

<table>
<thead>
<tr>
<th>شناسه زمان آسیاب</th>
<th>عامل مورد بررسی</th>
<th>زمان سینتر</th>
<th>دمای سینتر (°C)</th>
<th>دمای سینترهای دمای زردرخت‌های (دفیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>نمونه اولیه</td>
<td>1650</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تأثیر دمای سینتر-کوره معمولی</td>
<td>1550</td>
<td>3 ساعت</td>
<td></td>
</tr>
<tr>
<td></td>
<td>کوره معمولی</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 دقیقه</td>
<td>1650</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>تأثیر نوع حرارت-دهی</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ماکرووپریشی</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 دقیقه</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ماکرووپریشی</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 دقیقه</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ماکرووپریشی</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ساعت</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ماکرووپریشی</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 ساعت</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ماکرووپریشی</td>
<td>1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 ساعت</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تجزیه زیرکن به صورت همزمان انجام می‌شود؛ در نتیجه سینترپریز مخلوط پودرهای آلومینا و زیرکن به سختی امکان پذیر است [7]. کامپوزیت ۱، نمونه اولیه‌ای است که مقدار زیکونیا تراگونال کم (۸%) و استحکام مناسبی دارد. در کامپوزیت ۲، که زمان آسیاب کردن مواد اولیه افزایش داده شده، بهبود خوبی در خواص مشاهده می‌شود. مقدار زیکونیا تراگونال در برای شده و استحکام بیشتر افزایش یافته است. در ترکیب فازهای شناسایی شده در کامپوزیت ۳ (دمای ۱۵۵ درجه، کوره معمولی)، تنها فازهای آلومینا، مولایت و زیرکونیا وجود داشت و زیرکن دیده نشد. افزایش دمای سینتر در کوره معمولی موجب بهبود سینتر و استحکام مکانیکی شد و لیبر مقدار زیکونیا تراگونال تأثیری نداشته است.

۳- نتایج و بحث

در این پژوهش، تأثیر زمان آسیاب کردن مواد اولیه، تأثیر دمای سینتربه تأثیر ناحیه سینتر (حرارت‌دهی با ماکرووپریشی) بررسی شده است. در جدول ۲ است. در دمق در زیکونیا تراگونال، تخلخل ظاهری و استحکام خمشی کامپوزیت‌های آلومینا-مولایت-ژیوکنیا تهیه شده اورد. شکل ۱ نیز اگلی شتر برتر ایکس یکی از کامپوزیت‌های تهیه شده نمونه شماره ۴ را به عنوان نمای نشان می‌دهد. اگلی کامپوزیت‌های کاملاً شیب هم پیده و تهی شده XRD یک‌پایه مشابهی بود. تصاویر میکروسکوپ الکترونی روبشی (SEM) از رزساختار جنرال نمونه از کامپوزیت‌های تهیه شده نیز در شکل ۲ اورده شده است. گزارش شده که تهیه کامپوزیت‌های چگال مولایت-ژیوکنیا با مشکلاتی همراه است، زیرا سینتر شدن و...
جدول ۲- مقدار زیرکونیا تتراگونال، تخلخل ظاهری و استحکام خمشی کامپوزیت‌های آلومینا-مولایت-زیرکنیا

<table>
<thead>
<tr>
<th>شناسه زیرکونیا تتراگونال (%)</th>
<th>استحکام خمشی (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۷۸</td>
</tr>
<tr>
<td>۲</td>
<td>۳۱۵</td>
</tr>
<tr>
<td>۳</td>
<td>۳۸۶</td>
</tr>
<tr>
<td>۴</td>
<td>۴۸۱</td>
</tr>
<tr>
<td>۵</td>
<td>۴۰۵</td>
</tr>
<tr>
<td>۶</td>
<td>۵۰۸</td>
</tr>
<tr>
<td>۷</td>
<td>۳۸۳</td>
</tr>
<tr>
<td>۸</td>
<td>۴۴۰</td>
</tr>
<tr>
<td>۹</td>
<td>۴۶۰</td>
</tr>
</tbody>
</table>

شکل ۱- الگوی پراش پرتو ایکس کامپوزیت شماره ۴: آلومینا، مولایت، زیرکونیای مونولیتیک و Zr یک تتراگونال

دوره ۸ شماره ۱ بهار ۱۳۹۸
شکل ۲- ریزساختار کامپوزیت آلومینا-مولایت-زیرکونیا به سه شده (الف) نمونه ۱، (ب) نمونه ۳، (ج) نمونه ۶ و (د) نمونه ۷ و (ه) آنالیز EDS فازها در تصویر ب
حوزر زیتون‌نوازی تراگونال در سینتر و اکتشی‌سیمان، آلومینا و زیرکن، انتزاع ذرات مواد اولیه، دمای سینتر کمتر و چگالی بیشتر کامیونیز ذکر شد. لی و همکارش [9] گزارش کردن که بخشی از زیتون‌نوازی املا با حاویتدهی نمونه در کوره مايکربوتوپی نباید ماند.

مقايسه مقدار فازهاي نمونه تهيه شده در کوره معمولي و در کوره مايکربوتوپ تهيه شده با سپي و سپيس (رابطه ۱) تشكيل مولایت (رابطه ۳) بهصورت زیر مي باشد [8]:

\[ZrSiO_4 = SiO_2 + ZrO_2 \]
\[3Al_2O_3 + 2SiO_2 = Mullite (3Al_2O_32SiO_2) \]
\[(3+x) Al_2O_3 + 2ZrSiO_4 = xAl_2O_3 + Mullite (3Al_2O_32SiO_2) + 2ZrO_2 \]

قرار زيرکن در كامپوزيت‌های ۶ و ۷ (دام سپي مایکربوتوپ: ۱۴۵۰ و ۱۶۰۰ درجه) دیده شد و زیر کونیای تراگونال در آنها به روشين قابل شناختن بود. پيشيني مي شود كه تجزیه زيرکن كمال باشد و واکنش ژن تکمیل شده باشد. در نمونه‌های تهیه شده با مایکربوتوپی مقدار زیرکن‌نوازی تراگونال بيشترى نسبت به کوره معمولی دیده شد. قابل توجه است که زمان سپي در مایکربوتوپی پسایر کم است (۱ دقیقه) و همین عامل موجب شد تا نمونه‌ها به چگالی کامل ترسند و استحکام کمتری نسبت به نمونه‌های سپي و سپيس در کوره معمولی داشته باشند. افزایش زمان سپي تا حدامکان (۹ دقیقه) موجب بهبود سپي و استحکام مکانیکی شد ولی نمونه‌ها تشكیل فاز زیرکنیای تراگونال را ماندند.

نمونه‌های ۶ و ۷ اندايي دهد. از جمله عوامل مودر بر
در صورت اضافهدی، باید به خوبی به کامپوزیت‌های آلومینا-مالیت-زیرکونیا مقدار زیرکونیا تراگونال بیشتر نسبت به کوره معمولی تشکیل خواهد داشت. به عنوان یک مثال از زمان سینت کمتر، چگالی و استحکام نمونه‌های تپه شده در سیستم مایکرو، از نمونه‌های تپه شده در کوره معمولی کمتر گزارش می‌شود.

جهت افزایش زیرکونیا تراگونال، بهینه‌ی زمان آسیب کردن مواد اولیه در سینت و اکسی‌تی آلومینا-زیرکون، ساعت، بهینه‌ی دما و زمان سینت شده معمولی، 1600 درجه به مدت 3 ساعت و بهینه‌ی دما و زمان سینت با مایکرویو، 1600 درجه به مدت 1 ساعت گزارش می‌شود.

مراجع

