بیانیه علمی پژوهشی

۱۳۹۸
دروزه، ۸، شماره ۱

ایجاد پوشش سرامیکی ZrO۲ به روش اکسیداسیون الکترولیتی پلاسمایی
و مطالعه تأثیر فازهای مونوکلینیک/تراکونال بر مقاومت خوردگی پوشش

به عوب‌زداده۱، چنگیز دهدی‌نامی۲، هادی عدل خانی۳

۱ دانشجوی کارشناسی ارشد خورشید و حفاظت از مواد، دانشکده مهندسی مالولزی و مواد پرداز دانشگاه‌های فنی دانشگاه تهران
۲ استاد دانشگاه مهندسی مالولزی و مواد پرداز شاتندرز هنری فنیانگا تهران
۳ دانشیار، پژوهشکده مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

* hadelkhani@aeoi.org.ir , adelkhani@hotmail.com

اطلاعات مقاله:
دریافت: ۲۵ آذر ۱۳۹۷
پذیرش: ۲۴ خرداد ۱۳۹۸

کلمات江湖ه:
کلسیم زیرکونیوم، پوشش سرامیکی، فاز های مونوکلینیک و
تراکونال، اکسیداسیون الکترولیتی
پلاسمایی، مقاومت خوردگی

جدید: در این پژوهش پوشش سرامیکی ZrO۲ به روش اکسیداسیون الکترولیتی پلی‌امه (PEO) یا زیرکونیوم‌زدایی (ZrO۲) ایجاد می‌شود و در حالت الکترولیتی سیلیکات ناکلیئر (Na۲SiO۳) بر اساس تست نام‌دار Na۲SiO۳/PEO که به عنوان یک امکان فراهم‌آورنده‌ای جدید برای تغییر فازات حدودی می‌باشد، استفاده می‌گردد. الکترولیت‌های مورد اندازه‌گیری، با استفاده از اسپم (SEM) به‌صورت رنگارنگ رونده، به‌طور بهتری از فازات متوالی Na۲SiO۳/PEO در محدوده ۰/۵ لیه‌های خورشیدی، ایجاد می‌شود. نسبت میان‌فازات، تا حدی، به‌صورتی که فازات تراکونال به‌صورت نسبی به‌طور مداوم در آزمایش‌های مختلف تمایل دارد. نتایج نشان دهنده قبیل ضریب جذب نشان می‌دهد. متقابلیت معکوس فازات تراکونال با لایه‌های مقاومت خوردگی نسبت به سایر رویه‌ها دیده می‌شود.

خوب، مقاومت خوردگی بالا؛ پیک از اجزای مهم در ساختار
راکت‌های هسته‌ای بعنوان پوشش سوخت ولوله‌های
تحت فشار هستنشنی (۳-۴). عوامل مهم نواع فراست
اترکیب و غلظت محلول، دمای محتوای کاری (تأثیر بروزی

۱- مقدمه

زویکونیوم و الپازیمی آن با توجه به خواص فوق العاده‌ای
از قبیل ضریب جذب نوترن کم، مقاومت به خوردگی

۵۹
سرعت اکسیداسیون) و نفوذ هیدروژن سبب خوردن
زیکرونیوم در محیط داخل راکتور می‌شود. به منظور کنترل
و نفوذ محصولات خوردنی به ساختار زیکرونیوم در
حلقه اولیه سردرگمه در آپ سنتگین راکتور و
LiOH راکتورهای آب تحت فشار از محلول قلیایی با ترکیب
استفاده می‌شود. از سوی دیگر حضور در محیط قلیایی
در طی زمان‌های طولانی بعث خوردنی و کاهش
عمر کاری این فلز می‌شود[۵-۷].

در طی سال‌ها‌ها اخیر از طریق اصلاح ترکیب آلیاژ،
روش‌های تولید، عملیات ترمومکتاسی و روش‌های مختلف
اصلاح سطحی به‌پایه خواص خوردنی زیکرونیوم
برداشت. شدت است. روش اکسیداسیون الکترولیتی پلاسمایی
تکنیک الکتروشیمیایی است که با ایجاد پوشش‌های
اکسیدی سرامیکی بر روی فلز زیکرونیوم و آلیاژهای آن می‌گردد؛
(PEO) روش اکسیداسیون الکترولیتی پلاسمایی[۱]
روش‌های استادی و نمونه‌های زیکرونیوم-۴ می‌باشد.

۲- فعالیت‌های تجربی

۲-۱- آماده‌سازی نمونه
نمونه‌هایی از زیکرونیوم-۴ مورد استفاده در راکتور هسته‌ای آب
تحت فشار با برش لیزری به‌صورت ورق‌های با ابعاد
۲۵×۲۵×۴ می‌باشد. به همراه برای فرآیند
پوشش دهنده مواد استفاده قرار گرفت. از کاغذ‌های
سیلیسیم سبز به دمای ۸۵۰، ۷۰۰، ۶۰۰ و ۵۰۰ درجه سانتی‌گراد استفاده شد. به منظور ایجاد سطح سخت و حذف آلودگی‌های سطحی
استفاده‌شده. بعد از چربی زدایی در محیط تراسونیک
حاوی اتانول به مدت ۲ دقیقه; نمونه‌ها توسط آب مقرط
شسته و در هواپیما خشک شدند.

۱ Plasma Electrolytic Oxidation
2-1 مشخصات یاری پوشش

آنالیز فازی پوشش‌های ایجاد شده با دستگاه اندازه‌گیری ساختارهای آلی‌سی استون Phillips Xpert با نوارهای تایپیKa+مسی با طول موج 104+1-4 نانومتر، طول گام 0.4-4 کرون غیره و در گستره زاویای (30+5) درجه برای تغییر فازهای تشکیل شده در پوشش استفاده شد. در ادامه به کمک نرم‌افزار X Pert HighScore Plus در محلول کروموم‌های الکترونی روبشی (SEM) مدل Cam مورد بررسی قرار گرفت. از روش Scan-MV2300 اندازه‌گیری آنتن‌های آنتلر تصویرگیری و Digimizer استفاده شد. هدایت الکتریکی محلول نیز با استفاده از دستگاه هدایت سنج دیجیتالی مدل OLYMPUS اندازه‌گیری شد.

2-4 بررسی رفتار خوردگی

رفتار خوردگی پوشش‌ها با استفاده از روش آزمون پلاژیسیون و با دستگاه مدل Solarton ولت تا ولت تا 1 ولت نسبت به پانال‌های مدار باتری (OCP) و با نرخ روش انرژی‌های خورشیدی این پوشش‌ها در یک شیلد شناسی‌ای که به‌طور کامل شیمی‌ای آب‌های اتمسفری الکترود گرفته‌اند. هر یک از الکترود‌ها با محدوده‌های محدوده‌های الکترود این الکترود راکشته‌های هسته‌ای الکترولیت را به‌طور مستقیم راکشته‌های الکترولیت را به‌طور مستقیم

جدول 1: الکترولیت سبیلک‌های-الکروماتیک و پرایمرهای الکتریکی فرایند پوشش‌دهی

<table>
<thead>
<tr>
<th align="left">ولتنال‌های (V)</th>
<th align="left">هدایت الکتریکی (mS/cm)</th>
<th align="left">pH</th>
<th align="left">نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">474</td>
<td align="left">434</td>
<td align="left">546</td>
<td align="left">545</td>
</tr>
<tr>
<td align="left">256/75</td>
<td align="left">256/54</td>
<td align="left">256/16</td>
<td align="left">256/75</td>
</tr>
<tr>
<td align="left">154</td>
<td align="left">170</td>
<td align="left">198</td>
<td align="left">216</td>
</tr>
<tr>
<td align="left">810</td>
<td align="left">875</td>
<td align="left">85</td>
<td align="left">825</td>
</tr>
<tr>
<td align="left">10</td>
<td align="left">13</td>
<td align="left">16/15</td>
<td align="left">13</td>
</tr>
</tbody>
</table>
3- نتایج و بحث
3-1- منحنی ولتاژ-زمان فرآیند PEO
منحنی ولتاژ-زمان مربوط به نمونه‌های زیکونوموی پوشش داده شده در غلظت‌های مختلف الکترولیت در زمان ۴ دقیقه،

![شکل ۱- منحنی ولتاژ-زمان فرآیند پوشش دهنده در غلظت‌های مختلف الکترولیت سدیم آلومینات](image)

در اولین مرحله که به عنوان اکسیداسیون اندی شناخته می‌گردد، ولتاژ به سرعت نسبت به زمان افزایش می‌یابد که باعث شکل‌گیری و افزایش خسارت‌های نازک محیط روغن (اکسیدی) بر روی سطح نمونه می‌شود. در مرحله اکسیداسیون اندی که حدوداً ۲۰ ثانیه طول می‌کشد جرقه‌های واضحی بر روی سطح زیکونومو دیده نمی‌شود. همچنین با افزایش غلظت سدیم آلومینات، نرخ افزایش ولتاژ افزایش نسبت به زمان افزایش می‌یابد.

مکانیسم ایجاد اکسید زیکونومو بر اساس واکنش‌های الکتروشیمیایی و شیمیایی در سطح آن به شکل زیر است:

\[
H_2O \rightarrow O^{2-} + 2H^+ \\
Zr \rightarrow Zr^{4+} + 4e^- \\
Zr^{4+} + 2O^{2-} \rightarrow ZrO_2
\]

طق و اکتش‌های ۱ تا ۳ در هنگام مرحله اکسیداسیون اندی آب اکسیدهای (O²⁻) در فصل مشترک لایه اکسید/الکترولیت و کاتیون زیکونومو (Zr⁴⁺) در فصل مشترک زیکونومو/لاه اکسیدی تولید می‌شود. با تغییر آب اکسیدهای Zr⁴⁺ به سمت فاز زیکونومو و ترکیب با کاتیون آب اکتشدهای (O²⁻) در طبق و اکتش‌های ۴ و ۵ لایه مانع اولیه در سطح آن شکل می‌گیرد و در مرحله اکسیداسیون اندی با افزایش غلظت سدیم
الآلات در داخل محلول شیب تغییرات ولتاژ نسبت به زمان کاهش یافته به طوری که شیب منحنی ولتاژ-زمان برای نمونه 0.6/47.5monds به ترتیب ۷/۹۰ ۸/۶ ۴/۶ ۴/۶ محاصله و ثبت شد.

زمانی که لایه تهیه شده از مخلوط اکسیداسیون آنی، به ضخامت بحران معیانی می‌رسد، این لایه به عنوان یک محفظ از مواردی که عبارت از ولتاژ برای ثابت نگه داشتن دانتیسی جریان افزایش می‌یابد و شکست دی کلریک در مکانی‌ها یا ساختار ضعیف‌تر صورت می‌گیرد و تعداد میکرو جریه بر اثر تخلیه الکتریکی بروی سطح جریان، در این مخلوط جریان کلی از مجموع پانیراسون تونولی و پانیراسون حرارتی تشکیل می‌شود. این ولتاژ نسبتاً کمتری نسبت به تاحیه اکسیداسیون آنی برای ثابت نامتان دانتیسی جریان کافی مورد نظر است.

در پایان مرجع دوم با عبور از ولتاژ بحرانی، شیب تغییرات ولتاژ برای هر سه نمونه نسبت به زمان تدریجی به صفر است و تغییرات ولتاژ به حالت پایدار می‌رسد. ولتاژ این مرحله تحت عنوان ولتاژ نهایی شناخته می‌شود. با رسیدن به مرحله سوم، نسبت به مرحله دوم انداره میکرو جریه‌ها بازگرد و همچنین تعداد جریه‌ها کمتر شده که منجر به افزایش قابل ملاحظه جریان الکترونی می‌شود.

مقادیر ولتاژ شکست و ولتاژ نهایی الکتروولیت پایه سیلیکات-آلومینیتی در جدول ۱ نشان داده شده است. انر شکست در الکترولیت و ولتاژ نهایی، واگنشی ضدیه به ترکیب و هدایت بیونی الکتروولیت دارند. از طرفی بین هدایت بیونی الکتروولیت، ولتاژ شکست در الکترولیت و ولتاژ نهایی برای پنج نمونه مختلف در شکل ۲ گزارش‌شده است.

3 Thermal ionization
4 Final voltage
ایجاد پوشش سرامیکی ZrO$_2$ به روش اکسیداسیون الکترولیت بلافاصله و مطالعه تأثیر...

شکل 3- ارتباط بین هدایت بین الکترولیت و ولتاژ شکست الکترولیت

از طریق مدل توریکی پیشنهادشده توسط ایسکونسیوف [18]، ارتباط بین ولتاژ شکست و هدایت بین الکترولیت به صورت رابطه 5 بیان می‌شود:

$$V_B = a_B + b_B \log \left(\frac{1}{k} \right)$$

در این رابطه V_B و a_B و b_B و k به ترتیب، ولتاژ شکست، ثابت معین برای فاز، ثابت معین برای الکترولیت و هدایت بین الکترولیت، نابیناینده به دلیل حضور آلیون (Na$^+$) در الکترولیتهای حاوی سدیم (AlO$_2$$^{-}$) و کاهش (K) الکترولیتهای منقرض شده نهایی بین الکترولیت (آفریش یافته و بدون آنیون با سرعت بیشتری به لایه اکسید نفوذ می‌کند که منجر به آفریش کننده بار الکترون‌های اولیه به جای هدایت فشار کردها برای سرعت و ولتاژ نیاز برای شکست نهایی اکسیدی در مرحله دوم کاهش می‌یابد. از طرف دیگر با آفریش غلظت بین الکترولیت در داخل الکترولیت، قدرت بینی محصول آفریش یافته و در نتیجه ضخامت نهایی الکترولیت کاهش می‌یابد. نتایج حاصل از

شکل 3 نشان می‌دهد که با افزایش غلظت سدیم الکترولیت از 10 گرم بر لیتر به دلیل مشابه با پوشش دهی الکترولیت و قدرت بینی؛ ولتاژ شکست از 146 تا 154 ولت و ولتاژ نهایی از 374 تا 345 ولت کاهش می‌یابد.

3-2- ساختار بلوری

شکل 3 نشان می‌دهد که با افزایش وظیفه نمونه‌های پوشش به دهی شده در غلظت‌های مختلف الکترولیت‌ها، رابطه می‌دهد.

کسمی زیرکونیوم با شرایط ترمودینامیک و شرایط دما به نوع مواد استفاده کننده در الکترولیت‌های سه‌فاز می‌یابد: به این صورت که مولکولیک در دمای زیر 250°C، تراگوتیل بین دمای 250-300°C و در نهایت کیوبیک بالای 300°C باشند. به‌منظور تعیین نسبت فازهای مولکولیک و تراگوتیل به صورت کمی از رابطه 4 پیشنهادشده توسط توریکی استفاده شد [19]

1 Toraya

دوره 8 شماره 1 بهار 1398

64
جدول ۲- مقادیر فاز تشکیل شده فاز مونوکلینیک و تتراگونال به‌دست‌آمده از انگوی پراش پروپانس

<table>
<thead>
<tr>
<th>کد فازهای تشکیل شده مونوکلینیک تتراگونال</th>
<th>مقدار فاز (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مونوکلینیک - تتراگونال</td>
<td>A۰</td>
</tr>
<tr>
<td>مونوکلینیک - تتراگونال</td>
<td>A۲/۵</td>
</tr>
<tr>
<td>مونوکلینیک - تتراگونال</td>
<td>A۵</td>
</tr>
<tr>
<td>مونوکلینیک - تتراگونال</td>
<td>A۷/۵</td>
</tr>
<tr>
<td>مونوکلینیک - تتراگونال</td>
<td>A۱۰</td>
</tr>
</tbody>
</table>

در این رابطه، کسر جرمی فاز مونوکلینیک است که از رابطه ۷ ارائه‌شده توسط قاروی و نیکلسون محاسبه می‌شود [۱۹]:

\[
X_m = \frac{I(111)_m + I(111)_m + I(101)_m}{I(111)_m + I(111)_m + I(101)_m}
\]

که در این رابطه، I(111)_m و I(111)_m و I(101)_m به ترتیب شدت پیک فاز مونوکلینیک در ۲۳/۳۳۳°C و ۲۳/۳۳۳°C و ۲۳/۳۳۳°C شدید پیک فاز تتراگونال در ۲۳/۳۳۳°C است. کسر حجمی فاز مونوکلینیک به تتراگونال از روابط ۲ و ۳ محاسبه شد و در جدول ۲ ارائه گردید.

بر اساس شکل ۳ مشخص شد که در پوشش‌های اکسیدی (m-ZrO۲، JCPDS card no 37-1484) به عنوان فاز غالب و مقدار کمی فاز زیرکوینیای (t-ZrO۲، JCPDS card no 42-1164) وجود دارد. دمای بالا در حین فرازیده باعث تشکیل فاز تتراگونال می‌شود. از طرف دیگر بر اساس نتایج تجربی جدول ۳ میزان حضور فاز تتراگونال وابسته شدید به حمض و عدم حضور و همچنین غلظت سدیم آلومینات در الکترولیت به‌ه‌ نه NaAlO۲ و تئیت فاز تتراگونال می‌شود. مشاهده شد که زیرکوینیای خالص باعث تشکیل زیرکوینیای جزئی پایدار t-ZrO۲ و تئیت فاز تتراگونال می‌شود. مشاهده شد که الکترولیت با غلظت بالایی سدیم آلومینات (نموده (A۱۰) بیشترین مقدار t-ZrO۲ تئیت‌شهده با کاهش غلظت سدیم آلومینات میزان t-ZrO۲ کاهش می‌یابد، بطوری که در نمونه A۰ (الکترولیت بدون سدیم آلومینات) کمترین مقدار

\[V_m = \frac{1.311X_m}{1 + 0.311X_m}
\]

\[V_i = 1 - V_m
\]

\[X_m = \frac{I(111)_m + I(111)_m + I(101)_m}{I(111)_m + I(111)_m + I(101)_m}
\]

شکل ۳- ترکیب فازی پویش‌های ایجاد‌شده در الکترولیت‌های مختلف

۱ Nicholson
۲ Garvie
یکپاره نسخه سرامیکی ZrO۲ به روش اکسیداسیون الکترولیتی پلاسمایی و مطالعه تأثیر...

الکترولیت‌های اکسید حاصل از دما، فشار موضعی پلاسمای و میکروترک‌های ایجاد شده در اثر تنش حرارتی ناشی از سرعت سرد شدن منابع اکسید، باعث ایجاد حفرات و میکروترک بر روی سطح می‌گردد (۲۰). همچنین به دلیل حضور آلومینات به عنوان فاز تبیتی کننده فاز تراگونال در داخل الکترولیت میزان بیشتری از استحالة تراگونال به موتکلینیک تبدیل شده و تنش‌های حرارتی ایجاد شده در اثر استحالة میکروترک‌های متدیدی بر روی پوشش‌ها کند. هم‌اکنون به دلیل تفاوت در الکترولیت مورد استفاده برای هر یک از ترکیبات خوشه‌ای متفاوتی می‌خواهد یک تعریف بنا بر این تفاوت مصرف الکترولیت در الکترولیت‌های پوششی تأثیر یافته از روی PEO با تغییر غلظت سدیم آلومینات در الکترولیت تغییر می‌کند.

فاز تراگونال حاصل شده است. این رقیت را می‌توان بر اساس عملکرد پوک آلومینوم در هر یک از الکترولیت‌ها توجه نمود؛ بنابراین مشاهده شد که از طرف با حضور پوک آلومینوم و از طرف دیگر اکسیداسیون در دماهاي بالا منجر به تثبیت فاز تراگونال (شبدایا کريستالی بوده) می‌شود.

3-2- ساختار پوشش سرامیکی شکل ۴ و شکل ۵ تصاویر میکروسکوپ الکترونی رویشی سطحی و سطح مقطع پوشش‌های شکل گرفته در الکترولیت-های مختلف را نشان می‌دهد. در هر پنج پوشش ساختار شبه آتشنشان شامل اکسید در اطراف دهانه-های کالری می‌باشد. مشاهده شد و تیکت‌های ساختاری به دلیل یافته روشن PEO و آزاد شدن گاز در طول فرآیند اکسیداسیون است. به‌طوری‌که خروج گاز اکسیژن از اثر فرآیند

شکل ۳- مورفولوژی سطح و آلالز تصویری خارج یافته پوشش‌های PEO در الکترولیت‌های مختلف سیلیکاتی-آلومیناتی
روش PEO سرعت تشکیل فیلم وابسته به هدایت پوسته الکترولیت و سرعت انقلاب فیلم تحت تأثیر شدت میدان الکتریکی است (17). بر این اساس در مقایسه نمونه A10 با سایر نمونه‌ها می‌توان گفت که دلیل هدایت پوسته الکترولیت و شدت میدان الکتریکی، سرعت تشکیل فیلم در این نمونه نسبت به سایر نمونه‌ها بیشتر بوده است. درنتیجه نمونه A10 بالاترین ضخامت پوشش را نشان می‌دهد. درواقع با افزایش غلظت سدیم آلومینات و افزایش هدایت پوسته الکتریکی، نرخ تشکیل فیلم از نرخ انقلاب فیلم اکسیدی پیشی گرفته و منجر به تشکیل پوشش ضخیم‌تر می‌شود. افزایش تشدید نیوترون‌های بر اساس تصاویر میکروسکوب الکترونی روشنی محاسبه و به ترتیب برای نمونه‌های A0، A5، A2/5، A5/2 و A10 به ترتیب 37/27، 30/27، 29/27 و 14/22 میکرومتر محاسبه و ثبت شد. افرازیش در غلظت سدیم آلومینات سبب افزایش در ضخامت پوشش است. افزایش میانگین ضخامت آلومینات به مقدار 3/7/1 μm از 12 μm شد. با افزایش غلظت سدیم آلومینات فراکسیون اکسیداسیون فاز سریع تر صورت گرفته و ضخامت لایه اکسیدی افرازیش می‌باشد. مکانیسم تشکیل فیلم PEO و تغییر ضخامت پوشش شامل دو فرآیند رفتاری شکل گیری و انقلاب لایه اکسیدی در اثر قرارگیری تحت میدان الکتریکی است. در فرآیند پوشش به‌ه

شکل 5- تصاویر سطح مقطع نمونه‌های پوشش دهی شده در غلظت‌های مختلف الکترولیت سیلیکاتی–آلومیناتی
3- بررسی رفتار خوردگی

برای بررسی مقاومة به خوردگی پوشش‌های ایجاد شده از روش بلاریزاسیون پلیسبودیمیک استفاده گردید. شکل 5 نشان‌دهنده پوشش‌های ریو فولاد آلومینیز شده را در محلول 10% مولار لیتیوم هیدروکسید نشان می‌دهد.

نتایج نشان داد که هر پوشش پیش‌دار به روش مقاومت خوردگی پیچیده را نسبت به نمونه بدون PEO پوشش نشان می‌دهد. نمونه بدون پوشش به دلیل در معرض قرار گرفتن مستقیم با محیط خوردگی بیشترین مقدار جریان خوردگی (4.3×10⁻⁵) و کمترین مقادیر پتانسیل خوردگی LiOH

شکل 6- نشان‌دهنده پلاریزاسیون نمونه بدون پوشش و دارای پوشش بعد از غوطه‌وری در محلول 4 - نتیجه‌گیری

در این تحقیق بر اساس میزان فاز تبیک‌شده تراگونال و خواص خوردگی پوشش‌ها سرامیکی از طریق روش اксیداسیون الکترولیتی پلاسمایی بر روی فلز آلیاژ Zircaloy-4 در غلظت‌های مختلف زیرکونیوم-4 بررسی گردید.

