بررسی اثر عناصر انتقالی نانو بر تحولات فازی و ریزساختری دیرگدازهای MgO-C

کم کردن

نوی مقاله: علیمی پژوهشی
حسین رستگار 1, محمد باندیری 2, علی عیسی 1, فرهاد گلستانی فرد 2

1 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه مهندسی تولوزی و مواد، تهران، ایران
2 دانشکده مهندسی و علم ماده، دانشگاه صنعتی شریف

* h.rastegar@srbiau.ac.ir

چکیده:
در این تحقیق از افزودن نیترات آهن به ماده کاتالیستی چه لشکی در ماده MgO-C تأثیر آن بر ریزساختری دیرگدازهای پوششی بررسی شده است. در این تحقیق دو مدل نیترات در شرایط مختلف در خاکستر CR یافت و در مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل نیترات افزایش داد. در مدل نیترات افزایش داده شده نیترات آهن به مدت زمان شار مدار به مدت 1398 س ریزساختری را در دو مدل N

اطلاعات مقاله:
دریافت: 30 آذر 1397
پذیرش: 22 آبان 1398

کلید واژه:
نانو ذرات آهن، کاتالیست، نانولولهای کربنی، الیاف سرامیکی

دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه مهندسی تولوزی و مواد، تهران، ایران
1- مقدمه

در این تحقیق از افرازون نیترات آهن به عنوان پیش‌مدآورد کاتالیستی جهت ترکیب درجات نانو ذرات Fe-MgO-C فنولیک و تأثیر آن بر ریزساختار دیگرگذاشته می‌باشد. بررسی شده است بین ترکیب جهت بررسی ریزساختار و سیستم اتصال دیرگداز، ریزهای بدون افزودنی و حاوی افزودنی به فاز زنیت دیرگداز Fe-MgO-C افزوده شد. نمونه‌های آماده شده در دماهای 800، 1000 و 1200 درجه سانتی‌گراد در انسار اخیابی بستگی به ترکیب و تأثیر کاتالیستی از استفاده شد. در این تحقیق درصد آهن نسبت به زرین 0,6 درصد وزنی انتخاب شد. نتایج نشان داد نیترات آهن در طول آینده بخش در انسار اخیابی تبدیل به نانو ذرات آهن با اندازه متوسط 60 nm تا 80 nm شد و با افزایش دما نانو ولتهای کربنی توانید و بامبو شکل و کربن پوست پیازی در ریزساختار ترکیب یافته و بر مقدار آهن افرازه شد. از طرفی با حضور نانو ذرات آهن، سرعت اتم کرک واکنش‌های ریزساختار در فاز زنیت دیرگداز در حین آینده بخش بهبود بیافته و مورفولوژی فازهای ترکیبی شده در ریزساختار بعد از آینده بخش به مقادیر اولیه توجهی از حالت سردی به بالایی تغییر کرد. نتایج حاصل از بررسی ریزساختاری نشان داد Al2O3 و Al4C3 از این بررسی ریزساختاری نشان داد Al2O3 و Al4C3 از بین آنها نیز افرازی بایگان همچنین در دمای 1400 درجه سانتی‌گراد دیرگداز به فاز زنیت دیرگداز متغیر می‌گردد.

2- فعالیت‌های تجربی

به‌منظور بررسی تأثیر زنیت آهنهای اصلاح شده (حاوی افرازونی آهن) بر تحولات فازی و ریزساختاری دیگرگدازهای مزیتیا-کربنی، ترکیب زنیت دیرگداز با فرمولا اسپانها ارائه شده در جدول 1 آماده شده و هم‌اکنون که در جدول 1 مشاهده می‌شود از زنیت فنولیک (نواک) ایرانی مابع با 0,7 درصد کربن تابت، MgO با ۶/۵ درصد کربن مزیتیا-دوبی چنین با خلصه ۹۶/۵ درصد مزیتیا-کربنی به دست آمد. ریزساختاری با MgO به‌عنوان یک گاوکاری با ۹۰ درصد کربن تابت، MgO با ۹۶/۷ درصد MgO، مانوسال و نیترات آهن 9 آب شرکت استفاده شد. نتایج نشان داد جهت بررسی دیق قیمت افرازونی آهن در زنیت دیرگداز دو سری به صورت با سری به صورت با و بدون ترکیب
جهت بررسی فازهای تشکیل شده در کامپوزیت زمینه دیرگاز از آزنون پرش اشعه ایکس (XRD) استفاده شد. برای انجام این آزمون از ناحیه برتو CuKα با طول موج 1.54Å/2θ دقت XRD استفاده شد. برای بررسی‌های ریزساختاری Philips نمونه‌های زمینه دیرگاز MgO-C از مایکروسکوپ الکترونی رومیشی از نوع گیس میدانی (FESEM) انتخاب شد.

3- نتایج و بحث

3-1- بررسی‌های فازی و ریزساختاری

در شکل ۱ الگوی پریش اشعه ایکس به ترتیب نمونه‌های ۸۰۰, ۱۸۰۰ و ۲۹۰۰ درجه سانتیگراد درصدی در دمای ۲۰۰, ۵۰۰ و ۷۰۰ درجه سانتی‌گراد قرار داده شده است. این نتایج در بازه‌ای از ۵۰۰ تا ۷۰۰ درجه سانتی‌گراد برای بیش‌ترین ممکن سیال و الکترپلاست و سپس از ۱۰۰۰ درجه سانتی‌گراد به دمای ۱۴۰۰ درجه سانتی‌گراد کاهش شد. برای کنترل درصدی در بازه‌ای از ۵۰۰ تا ۷۰۰ درجه سانتی‌گراد به دمای ۱۴۰۰ درجه سانتی‌گراد کاهش شد. برای کنترل درصدی در بازه‌ای از ۵۰۰ تا ۷۰۰ درجه سانتی‌گراد کاهش شد.

جدول ۱- فرمول‌سازی نمونه‌های مختلف زمینه دیرگاز MgO-C

<table>
<thead>
<tr>
<th>ماده اولیه</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC6</td>
<td>27</td>
</tr>
<tr>
<td>MC0</td>
<td>80</td>
</tr>
<tr>
<td>MCG6</td>
<td>5.5</td>
</tr>
<tr>
<td>MCG0</td>
<td>7</td>
</tr>
</tbody>
</table>

1 age
بررسی اثر عناصر انتقالی نانو بر تحولات فازی و ریزساختاری دیرگدازهای کم‌کربن

در دمای ۱۴۰۰°C به موزر از سیستم خارج شده است. نکته قابل توجه در نمودار ۲۰ مقداری فاز Al ۲Ni در دمای ۱۴۰۰°C ممکن است باقی بماند که پیک‌هاي آن در حداکثر ۲۶ درجه می‌باشد که نشان‌دهنده آن است که کرین حاصل از پریکلس اصلی پریکلس و اسپینال می‌باشد و به دلیل افزایش دما به شدت پیک اسپینال افزوده شده و مقدار آن بیشتر شده است. در نمودار MC6 پیک شده در دمای ۱۴۰۰°C بر شدت پیک Al۴C۳ افزوده شده است اما در نمودار ۲۰۰۰°C پیک Al۴C۳ در شکل ۱ مشاهده می‌شود. بنابراین می‌توان گفت حضور افزودنی خاوی آهن در نمودارهای زمانی در افزایش می‌تواند تأثیر بیشتر داشته باشد. در نمودارهای خاخ شده در دمای ۱۴۰۰°C فاز‌های اصلی پریکلس و اسپینال کم‌کربن مشاهده می‌شود ولی باز هم به دلیل افزایش دما به شدت پیک‌هاي اسپینال افزوده شده است. در نمودار MC6 در دمای ۱۴۰۰°C یک‌پیک‌های مشاهده نمی‌شود. این مسئله با افزایش در دموما در پایین‌تر می‌باشد و گرفته‌های پریکلس و Al و در دمای ۱۴۰۰°C و ۱۲۰۰°C و ۱۰۰۰°C مشاهده شده است. نمودارهای پریکلس و و گرفته‌های اسپینال و پریکلس می‌باشد به فقط به دلیل حضور گرفته‌پولکی در ترکیب اولیه پیک گرفته‌پیک به الگوها اضافه شده است. در نمودارهای مختلف MC6 و ۰ (۰ و MC0 پیک شده در دموما شکل ۱ - الگوهای پراش ایکس X نمودار a) و b)
کره است (شکل ۴-۸)، با افزایش دمای پخت به ۱۵۰۰ درجه سانتی‌گراد (شکل ۴-۸) مشاهده می‌شود، بر مقدار وسکرهای سرامیکی و نانو لوله‌های کربنی افزوده شده و همچنین انداره آنها زیاد می‌شود. با افزایش دمای پخت به ۱۳۰۰ درجه سانتی‌گراد (شکل ۴-۸) در نمونه‌های SEM نمایش داده شده است و در نمونه‌های مورفولوژی ریزساختار بیشتر به سمت وسکری شدن می‌روید که احتمالاً به دلیل حضور نانو ذرات Fe سبب می‌شود. بیشتر وسکرهای سرامیکی شکل است. (مگنت، MgO، MgAl₂O₄) می‌باشند سطح صاف و شکل مستقیم و سوزنی دارند و برخی نیز در یک طرفشان یک مقدار ضخامت بیشتری دارند که نشان دهنده حضور ذرات اهی شدن می‌باشند.

شکل ۳- تصویر ریزساختار نمونه‌های MCO و MCG0 (پخت شده در دمای ۱۴۰۰ درجه سانتی‌گراد)
بازسیری اثر عناصر انتقالی نانو بر تحولات فازی و ریزساختار دیبرگدزهای کم‌کردن...

شکل ۴- ریزساختار نمونه نامه MC6 پخت شده در دمای (a) ۱۴۰۰ °C (b) ۱۳۰۰ °C (c) ۱۰۰۰ °C

۳-۲- بررسی‌های ترمودینامیکی و اکتشافات دما بالا

با توجه به تأثیر آنالیز فازی و ریزاسختاری نمونه‌های زمینه Fe در دیگر گاز مانند MgO-C مشاهده شد با استفاده از افزودنی نانو (مرکه ۶ و MC6) ترکیب دیگری در نمونه‌های بدون گرافیت کربن حاصل از رزین فولیک در طول فرایند پخت به صورت کربناتی در آمد و دما گرافیت ماهیت آن به طور محسوسی کاهش می‌یابد که ممکن است در مقاله قابل توضیح داده شده است(۱۸). علاوه بر کربن اوران و تبدیل آن به کربن MgO-C کربناتی، فازهای قابل تشخیص در زمینه دیگر گرافیت شامل AlN، MgO، Al4C3، MgO اسپزیت و گرافیت بود که در فاز این فاز‌ها با افزودن نانو Fe به شکل وسیکری مشاهده شد. از طرفی درکنار این وسیکرها و در فضاهای بین دانه‌های کره‌زین به عنوان بایندر حضور داشته و همچنین روی اگربگیت‌های نانو لوله‌های کربنی به صورت درهم پیچیده شده شکل شده‌اند.

با افزودن نانو ذرات Fe به نمونه‌های دیگرگاز حاوی گرافیت مورفولوژی ساختار تغییر قابل ملاحظه‌ای نشان می‌دهد. شکل ۵ تغییر ریزساختاری نمونه MCG6 پخت شده در دمای ۱۴۰۰ °C. از دسترسی با ترتیب Fe در نمونه‌های دیگرگاز می‌دهد. با حضور نانو ذرات Fe در نمونه‌های دیگرگاز MCG6 افزایش دما مشخص می‌شود و تراکم وسیکرها افزایش می‌یابد و در فاز اتصال روی سطح اگربگیت‌ها تشکیل می‌شود.
نمونه‌ها نفوذ کند. حضور Al گازی در واکنش 7 یعنی حاضر تجزیه می‌شود و در واکنش
چرخش ترمودینامیکی و انیمسفر
ایجاد شده و در حضور کربن و آکسیژن و با انتخاب ترکیب
زمینه درگاز و انتخاب فلز Al به عنوان آنتی‌اکسیدان
می‌توان کفته واکنش‌های 1-12 می‌تواند اثبات به پیش‌داشته. فاز
می‌تواند تشکیل AlN و Al$_2$C$_3$
شود و با افزایش دما یکت و انیمسفر ایجاد شده مقدار
MgAl$_2$O$_4$ کاهش یافته و مقدار Al$_2$C$_3$
افراش می‌یابد (واکنش‌های ۳-۵) [۱۹].

4Al(s,l)+3C(s)=AlC$_3$(s)
2Al(s)+N$_2$(g)=2AlN
AlC$_3$(s)+2N$_2$(g)=4AlN(s)+3C(s)
AlC$_3$(s)+6CO(g)=2Al$_2$O$_3$(s)+9C(s)
Al$_2$O$_3$(s)+MgO(s)=MgAl$_2$O$_4$(s)
AlC$_3$(s)=4Al(g)+3C(s)
2Al(g)+MgO(s)+3CO(g)=MgAl$_2$O$_4$(s)+3C(s)
MgO(s)+C(s)=Mg(g)+CO(g)
2Al(g)+Mg(g)+4CO(g)=Mg$_2$Al$_2$O$_4$(s)+4C(s)
2AIN(s)+3CO(g)=2Al$_2$O$_3$(s)+N$_2$(g)+3C(s)
2AIN(s)+MgO(s)+3CO(g)=Mg$_2$Al$_2$O$_4$(s)+N$_2$(g)+3C(s)
2Mg(g)+O$_2$(g)=2MgO(s)

AIN که منجر به تشکیل وسکسرهای Al(g)
می‌شد می‌تواند از طریق واکنش ۶ به وجود آید و در داخل

در فرآیند پیت برگدار

MgO-C با توجه به انیمسفر احیایی

ایجاد شده و در حضور کربن و آکسیژن و با انتخاب ترکیب
زمینه درگاز و انتخاب فلز Al به عنوان آنتی‌اکسیدان
می‌توان کفته واکنش‌های 1-12 می‌تواند اثبات به پیش‌داشته. فاز
می‌تواند تشکیل AlN و Al$_2$C$_3$
شود و با افزایش دما یکت و انیمسفر ایجاد شده مقدار
MgAl$_2$O$_4$ کاهش یافته و مقدار Al$_2$C$_3$
افراش می‌یابد (واکنش‌های ۳-۵) [۱۹].

Mg,
Al,
AlN
MgO-C
MgAl$_2$O$_4$
MgO
Mg$_2$Al$_2$O$_4$
Al_2O_3
(V) MgO and CO are used in many industries because of their ability to react at high temperatures. MgO reacts with Fe and CO in the presence of Mg to form CO₂ and Mg₂O. This reaction is exothermic and releases heat, making it useful in various processes.

(VI) MgO reacts with CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VIII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VIII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VIII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VIII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VIII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.

(VIII) MgO reacts with Fe and CO to form CO₂ and Mg₂O. This reaction is also exothermic and releases heat, making it useful in various processes.
نتیجه‌گیری

- با استفاده از افزودنی فاز آهن کربن، امری حاصل گرایش مثلثی می‌شود.
- با استفاده از افزودنی نانوذرات آهن در دمای دیرکنار می‌تواند در نسخه مولکول‌های پنیر، دیسی اتصالی و زمینه نظامی از حالت ذره‌های به حالت توختاله تغیر کرده است. این ایجاد تشکیل شده می‌تواند ترکیب‌های مختلفی از Al4C3 نیز می‌کند.

- با توجه به ریزساختارهای نانوذرات‌های بزرگ بانج در تشکیل وی‌سکرهای سرامیکی برخوردار-جامد-مایع (V-S) و بخار-جامد (V-L-S) است.

مراجع

of MgAl\textsubscript{2}O\textsubscript{4} whiskers by an oxidation-reduction reaction, J. Am. Ceram. Soc. pp. 491–494, 1996.

