تاثیر pH بر روی مورفولوزی و پلاریزاسیون مقاومتی پوشش کامپوزیتی Ni-P-TiO$_2$-ZrO$_2$

نوشته‌هایی از: حسین خداوردی لو، هادی ابراهیمی فر

بخش مهندسی مواد، دانشکده مهندسی مکانیک و مواد، دانشگاه تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

* H.Ebrahimifar@kgut.ac.ir

اطلاعات مقاله:

دریافت: ۱۹ خرداد ۱۳۹۸
پذیرش: ۱۳ شهریور ۱۳۹۸

کلیدواژه‌ها:

AISI 316L
پوشش کامپوزیتی Ni-P-TiO$_2$-ZrO$_2$
پلاریزاسیون
EDX

۱- مقدمه

یکی از مهم‌ترین قسمت‌های هر قطعه سطح آن است، نکته قابل توجه این است که اغلب قطعات در اثر عوامل سطحی دچار تخریب شکست می‌شوند. [۱] در عمل با انجام فرآیندهایی بر روی دلو و/یا محبیت و یا گرد و غیره می‌توان کره برای کاهش سرعت خودگذاری اضافه‌ای از پوشش‌های سطحی بر روی قطعات استفاده کرده که تاثیری در خواص مکانیکی ایجاد نکرده ولی مقاومت به خوردگی را افزایش می‌دهد. [۲]
نیکل - فسفر و بهبود رفتار تریپولیژیکی پوشش کامپوزیتی را نشان می‌دهد. همچنین همبستگی ذرات زیکونیا مطابق با گزارش باهنر و همکارانان (15) موجب افزایش مقاومت به خوردگی پوشش نیکل - فسفر و مطابق با گزارش‌های سطح‌آرای و همکارانان (16) موجب کاهش مقاومت به خوردگی پوشش نیکل - فسفر شده است. یکی از پارامترهای تأثیر گذار بر مورفولوژی پوشش pH حمایت ابزار است. (30 - 25) pH در پیوستگی باکتری و هموکارتنیت به بررسی تأثیر بر مورفولوژی و سنگ آب شیرینی‌کننده تکیه‌گیری دهان‌های پوشش به تغییر pH می‌تواند علت این تغییر باشد (15). در تحقیق دیگر، پوشش کامپوزیتی نیکل - زیکونیا به روش آب‌هیچکی در سیستم‌های بر روی فولاد زنگ نزن ایجاد شد و تأثیر افرازی (30 - 25) pH بر ساختار و مورفولوژی پوشش نیکل بررسی شد (16). نتایج حاکی از آن بود که علی‌رغم عدم تغییر ساختار پوشش نیکل، مورفولوژی تغییر کرد. تیتان و همکارانان (17) pH اثر (30 - 25) pH بر روی پوشش مورد بررسی قرار دادند. نتایج تحقیق آنها نشان داد با آغازین انتظار می‌رود افرازی ذرات سرامیکی تیتانیا و زیکونیا به پوشش‌های نیکل – فسفر خواره‌ای این پوشش‌ها را بهبود بخشید. این بار با توجه به مطالعات صورت گرفته و بررسی‌های انتحال شده تاکنون پوشش Ni-P-TiO2-ZrO2 مورد بررسی تهیه شده است. نتایج می‌تواند اکسید تیتانیا و اکسید زیکونیوم مقاومت به خوردگی پوشش‌های Ni-P را بهبود بخشید.

استفاده از ذرات اسیدی در کار پوشش‌های زمینه فلزی و توپیک پوشش‌های کامپوزیتی خواص پوشش‌های مزدوج را افزایش می‌دهد. یکی از انواع پوشش‌های پر-کاربرد در صمت، پوشش‌های نیکل-فسفر هستند. ذرات سرامیکی که با نیکل و فسفر بالا مورد ایکسید قرار می‌گیرند روشی مناسب برای تهیه پوشش با خواص مکانیکی و خوردگی بهتر می‌باشد. منابع و همکارانان (7) در مورد تأثیر میزان اکسید آلومینیوم موجود در حمام نیکل-فسفر در پزشکی سی سی‌ای-پی‌آی، میزان بدون خوردگی زمانی که میزان آلومینیوم موجود در محلول 25 %/L بازش با پیوستگی دیگر تأثیر اندازه ذرات SiC به روی پوشش دهنده نیکل-فسفر بررسی شد و نتیجه دهان که بیشترین ترکیب پذیری در حالت میانی بین میکرو و نانو است. مقایسه دو ذرات به اندازه‌های 50 نانومتر و 3 میکرو متراً است. اثر [8 و 9] با تکنیک الکتروفورز استفاده شد. نشان داده شد که حضور هیدرو کربنات سرمیا در پوشش موجب افزایش بهبود زیستی سایشی نسبت به حالت های گیا که هر دو ذرات بصورت جداگانه در پوشش حضور دارد شده است [10 و 11].

اختیاری ژرکوئی نیز به عنوان یک ماده سرامیکی دارای مقاومت صمیمی، سختی، استحکام و مصرف‌گمی بالا مورد توجه محققین قرار گرفته است. مطالعاتی که توسط سنگ و همکارانان (12) در مورد رفتار تریپولیژیکی پوشش‌های فسفر-ژرکوئی انجام گرفت کاهش اثرات تراوم سی اف و پوشش کامپوزیتی نیکل - فسفر-ژرکوئی نسبت به پوشش
در این پژوهش نوع پوشش کامپوزیتی

\[\text{Ni-P-TiO}_2\text{-ZrO}_2 \]

با استفاده از تکنیک رسوب دهی الکتریکی به روش جریان مستقیم در مقادیر متغیرهای pH و فولاد

\(\text{Ni-Si} \) 316L

رسوب داده شد و تأثیر مقادیر

\(\text{pH} \) بر روی مورفولوژی، مقدار نشست اکسید

تیتانیوم/اکسید زیرکونیوم و رفتار خوردگی آن مورد بررسی قرار گرفت.

2- فعالیت‌های تجربی

در این تحقیق از فولاد

\(\text{Ni-Si} \) 316L استفاده شد.

از این فولاد فلزی با ابعاد 200 × 200 × 200

\(\text{mm} \) با سیمک مکعب به عنوان زیلایی کاننده به‌کار گرفته شد. از ورق تیکیلی با خلود این سیمک مکعب به عنوان آناد استفاده شد. عملیات آماده سازی نمونه‌ها قبل از آنکه به این صورت بود که در ابتدا نمونه‌های فولادی با سیبادهای

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

\(0.2 \) گرم از فولاد استاندارد ASTM B254R

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

\(0.2 \) گرم از فولاد استاندارد ASTM B254R

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

\(0.2 \) گرم از فولاد استاندارد ASTM B254R

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

\(0.2 \) گرم از فولاد استاندارد ASTM B254R

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

\(0.2 \) گرم از فولاد استاندارد ASTM B254R

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

\(0.2 \) گرم از فولاد استاندارد ASTM B254R

\(\text{Ni-P-TiO}_2\text{-ZrO}_2 \) به‌کار گرفته شد.

جدول 1- ترکیب شیمیایی و شرایط آزمایش

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>مقدار (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سولفات نیکل</td>
<td>240</td>
</tr>
<tr>
<td>کلرید نیکل</td>
<td>35</td>
</tr>
<tr>
<td>تاکسیم اسیدهای H2SO4</td>
<td>30</td>
</tr>
<tr>
<td>نیترات سطحی NaNO3</td>
<td>2.5</td>
</tr>
<tr>
<td>اکسید زیرکونیوم</td>
<td>20</td>
</tr>
<tr>
<td>اکسید تیتانیوم</td>
<td>30</td>
</tr>
<tr>
<td>ساخربین</td>
<td>1</td>
</tr>
<tr>
<td>سودکاستات</td>
<td>0.2</td>
</tr>
<tr>
<td>دما</td>
<td>60-65 °C</td>
</tr>
<tr>
<td>سرعت هم دهنده</td>
<td>200 rpm</td>
</tr>
<tr>
<td>pH</td>
<td>3.5, 4, 4.5</td>
</tr>
</tbody>
</table>

مطالعه ترکیب‌های داده شده به یکدیگر به یک یک

\(100 \) سیلیکا لیتر اضافه شدند و با افزودن آب قطر دوبار تقطیر جام به 100 میلی لیتر رساندند. سپس ۲۴ ساعت در حمام به ۴۰ گرمی با استفاده از همین مخازنی هم زده شد. سپس به ترتیب اکسید تیتانیوم با اندازه درجه متوسط ۲ میکرومتر و
تأثیر فواید مرموز و پلاستیسین مقاومتی پوسته کامپوزیت

آن سنجیده شد، و یک میله بلاتینی به عنوان الکترود کمکی استفاده گردید. منحنی های پلاستیسین نسبت به 1mV.Sec و در سمت اول OCP با استفاده از آزمون شدت مولکول اضافه شدند. برای توزیع کیک کوکی دوز سراییکی و چاپگری از انرژی هالوژن در محلول به مدت 4 ساعت توسط همز مغناطیسی و سپس به مدت 10 دقیقه توسط دستگاه آلتراسونیک متغیری همز میدان شد. زمان بیشتر برای تخم نمونه ها 14 دقیقه و حجم حمام 100 میلی لیتر در نظر گرفته شد. فرآیند بیشتر در pH اندیه در انتخاب این محدوده pH بر اساس سایر تحقیقات گذشته انجام شد [17-19]. برای تنظیم pH حمام از اسید سولفوریک و هیدروکسید ناپتولیوم استفاده شد. بعد از انجام پوسته دهنده الکتروکمیکی کاری با آب دو بار تقطیر شسته شدند و سپس در هوا شکن شدند. نمونه های پوسته داده شده در حمام حاصل از pH اندیه 3.7 ± 0.5 و 4/5 به ترتیب به صورت S1, S2, S3, S2, S4 نامگذاری شدند.

بررسی مرموز مولکولی سطح نمونه های پوسته داده شده با Cam Scan (SEM) و EDX انجام گردید (HV 2300 هیلره با میکرو آنتی) مدل N20 استفاده شد. برای انجام اکتیو کمپسونیک استاندارد ASTM G3 چهار جهت رضایت به حالت یا کاهش در pH اندیه 3.7 ± 0.5 به‌طور مداوم مسترال استفاده گردید.

همانطور که از شکل مشخص است، پوسته پوسته به پوسته سیل سطح پوسته در سطح 1-2 نشان داده شده است. یک طبقه خارجی نمونه کامپوزیت نمونه S2 در شکل 1-2 نشان داده شده است.

همچنین نشان داده شد که پوسته خاکی دیده می‌شود. بوده اما در برخی از قسمت‌ها خاکی کمتر دیده می‌شود. در پوسته ترکیبی از شکل مشخص است. حضور حفره‌ها و ترکیبی می‌تواند ناشی از ترکیبی‌شکل ناتوانی از چنین ترکیبی‌های ناپیمایش‌های دوز سراییکی در pH اندیه 3.7 ± 0.5 به‌طور مداوم مسترال استفاده گردید.

همچنین نشان داده شد که پوسته خاکی دیده می‌شود. بوده اما در برخی از قسمت‌ها خاکی کمتر دیده می‌شود. در پوسته ترکیبی از شکل مشخص است. حضور حفره‌ها و ترکیبی می‌تواند ناشی از ترکیبی‌شکل ناتوانی از چنین ترکیبی‌های ناپیمایش‌های دوز سراییکی در pH اندیه 3.7 ± 0.5 به‌طور مداوم مسترال استفاده گردید.

همچنین نشان داده شد که پوسته خاکی دیده می‌شود. بوده اما در برخی از قسمت‌ها خاکی کمتر دیده می‌شود. در پوسته ترکیبی از شکل مشخص است. حضور حفره‌ها و ترکیبی می‌تواند ناشی از ترکیبی‌شکل ناتوانی از چنین ترکیبی‌های ناپیمایش‌های دوز سراییکی در pH اندیه 3.7 ± 0.5 به‌طور مداوم مسترال استفاده گردید.

همچنین نشان داده شد که پوسته خاکی دیده می‌شود. بوده اما در برخی از قسمت‌ها خاکی کمتر دیده می‌شود. در پوسته ترکیبی از شکل مشخص است. حضور حفره‌ها و ترکیبی می‌تواند ناشی از ترکیبی‌شکل ناتوانی از چنین ترکیبی‌های ناپیمایش‌های دوز سراییکی در pH اندیه 3.7 ± 0.5 به‌طور مداوم مسترال استفاده گردید.

همچنین نشان داده شد که پوسته خاکی دیده می‌شود. بوده اما در برخی از قسمت‌ها خاکی کمتر دیده می‌شود. در پوسته ترکیبی از شکل مشخص است. حضور حفره‌ها و ترکیبی می‌تواند ناشی از ترکیبی‌شکل ناتوانی از چنین ترکیبی‌های ناپیمایش‌های دوز سراییکی در pH اندیه 3.7 ± 0.5 به‌طور مداوم مسترال استفاده گردید.

همچنین نشان داده شد که پوسته خاکی دیده می‌شود. بوده اما در برخی از قسمت‌ها خاکی کمتر دیده می‌شود. در پوسته ترکیبی از شکل مشخص است. حضور حفره‌ها و ترکیبی می‌تواند ناشی از ترکیبی‌شکل ناتوانی از چنین T

شکل 1- تصویر از پوشش کامپوزیت Ni-P-ZrO۲-TiO۲ در pH 9/3 (الف)، pH 9/5 (ب) و pH 9/4.5 (ج)
عکس 1. اثرات میکروفلزی سطح پوشش نمونه S3 را نشان می دهد. میزان مشاهده می شود که در pH=4 اثر هیدروژن و هيبریدها و هيبریدها از یک رنگ و سطح صاف و پوششی یکنواخت بدست آمده است. همچنین انرژی رسوخته بالاتر سبب می شود که زمان کافی برای آزاد سازی تنش داخلی و ترک خوردنی که ممکن است در پوشش رخ دهد وجود نداشته است [22]. با افزایش pH نزدیک اثر هیدروژن کاهش یافته و رنگ رسف دهی افزایش می یابد. همچنین با افزایش
تشکیل ترکیبات ترد هيبریدی محدود می شود [23]. در

tحقیقات درگیر نیز با افزایش pH تشکیل ترکیبات هيبریدی محدود شد. تیان و همکارانش در پژوهش خود نشان دادند در مقایسه با سایر دیگر pH (pH=3/4/5/6) اثر هیدروژن و هيبریدها کمتر از آن بوده و همچنین افزایش pH می شوند. به طور همزمان، رنگ رسوب به دهی با افزایش pH افزایش می یابد. رنگ رسوب به دهی بالاتر سبب می شود که

شاخص افزایشی

pH=3 (الف)، pH=3.5 (ب) و pH=4.5 (د)

شکل 2- آنالیز EDX از پوشش کامپوزیت Ni-P-ZrO۲-TiO۲ از پروپان اسفناج

دورة ۸ شماره ۳ پاییز ۱۳۹۸
صوروت ۳: تغییرات میزان نشست ذرات اکسیدی تیتانیا و زیبرکونیا بر اثر تغییر pH را نشان می‌دهد. مقدار نشست زیبرکونیا و تیتانیا در پوشش از روي انالیز EDX و گرفتن نسبت بین مقادیر وزنی O و Ti و Zr تعیین شد. همانطور که مشاهده می‌گردد، رشته ذرات در pH ۴ پیشترین میزان را دارد و بعد از آن با افزایش pH درصد نشست تیتانیا و زیبرکونیا در پوشش کاهش می‌یابد. با افزایش pH تا مقدار ۴ مقدار نیکل و فسفر کاهش و سپس افزایش پیدا کرد. دلیل کاهش مقدار فسفر و نیکل افزایش مقدار ذرات سرمایی تیتانیا و زیبرکونیا در پوشش بود.

در های pH ۵ بالاتر عمدها به صورت Ni۲⁺ وجود دارد و در pH های بالاتر به [Ni(H₂O)₆]²⁺ می‌پیکر می‌شود.

همانگونه که مشاهده می‌شود در تمامی pH ها پیک‌های نیکل، زیبرکونیوم، و آکسید نشسته می‌شود.

فسفر فقط در pHهای ۲/۵ و ۳/۷ ظاهر شده است. حضور این پیک‌ها نشست نیکل، فسفر، اکسید تیتانیوم و اکسید زیبرکونیوم را تایید می‌کند.

شکل ۳ تغییرات میزان نشست ذرات اکسیدی تیتانیا و زیبرکونیا بر اثر تغییر pH را نشان می‌دهد. مقدار نشست زیبرکونیا و تیتانیا در پوشش از روي انالیز EDX و گرفتن نسبت بین مقادیر وزنی O و Ti و Zr تعیین شد. همانطور که مشاهده می‌گردد، رشته ذرات در pH ۴ پیشترین میزان را دارد و بعد از آن با افزایش pH درصد نشست تیتانیا و زیبرکونیا در پوشش کاهش می‌یابد. با افزایش pH تا مقدار ۴ مقدار نیکل و فسفر کاهش و سپس افزایش پیدا کرد. دلیل کاهش مقدار فسفر و نیکل افزایش مقدار ذرات سرمایی تیتانیا و زیبرکونیا در پوشش بود.

در های pH ۵ بالاتر عمدها به صورت Ni۲⁺ وجود دارد و در pH های بالاتر به [Ni(H₂O)₆]²⁺ می‌پیکر می‌شود.
هنگامی که pH شانسی، که به سطح اتانی می‌رسند بیش از مقدار توانایی جذب کردن سطح می‌باشد آلگومره شدن اتفاق می‌افتد و دوباره محل‌های مناسب جوانتزی کاهش پیدا خواهد کرد. تمایل ذرات کوچک درون حمام به کاهش مقدار انرژی سطحی pH منجر به آلگومره شدن ذرات می‌شود (۲۵ و ۶۴). در ۲۵ میزان رسوب نیکل و ترکیبات ناخواسته بیشتر شده ولی رسوب اکسید تیتانیوم و اکسید زبر کوبنیوم که هندی تحقیق بود کمتر شد. تمامی ذرات آلگومره شده موجود بر روی سطح اکسید تیتانیوم و اکسید زبر کوبنیوم نادیده و بخش زیادی از این ترکیبات اکسیدی و هیدروکسیدی حاوی نیکل هستند. این موضوع در سایر تحقیقات نیز مشاهده شد (۲۳). عامل دیگری که باعث آلگومره شدن ذرات در pH=4.5 می‌شود پتانسیل زنا است. پتانسیل زنا، پتانسیل الکتریکی بین سطح ذره جامد و محلی آبی می‌باشد که بوسیله زنا سایز مطلوب با رابطه هنری محاسبه می‌شود:

\[
Z = \frac{3nU_E}{2\varepsilon f(La)}
\]

که Z به پتانسیل زنا، \(n \) و بسکوستی محول، \(U_E \)، جنبش الکترورفتیکی، \(\varepsilon \) ناپ، دی الکتریک محول و \(f(La) \) هنری می‌باشد (۲۴). تحقیقات مشابه مقدار پتانسیل ذرات برای پوشش‌های نیکل-فسفر را به محدود pH=۴/۵ تا ۳/۵ صفر گزارش کردن [۱۱-۷]. از این پژوهش نیز با توجه به انگیزه کمترین مقدار انرژی در نمونه سی Aqf در افزایش اتفاق مقدار پتانسیل زنا در pH=4-۵ حداکثر pH=3/۵ به‌سیب صفر بی‌شک مقدار پتانسیل زنا بیانگر برخورد ذرات می‌باشد و می‌توانیم بار ایجادی سوسپنسیون

\[\text{داشتهای ۸ شهریور ۱۳۹۸}\]
شکل 3- بررسی رفتار خوردگی

شکل 5 منحنی‌های پلاریزاسیون پتانسیوئدینامیک برای نمونه‌های پوشش داده شده در pHهای 3، 4.5 و 5/4 و 4/5 را نشان می‌دهد. همچنین جدول 2 داده‌های حاصله از اکسترالولاسیون تاپل، شامل دانسیتی جریان خوردگی i_{corr}، مقاومت پلاریزاسیون (E_{corr})، مقاومت پلاریزاسیون (I_{corr}) و سرعت خوردگی (mm/year) را ارائه می‌نماید.

پروندا باید تا پنجم منحنی‌های پلاریزاسیون با استفاده از نرم‌افزار NOVA انجام شود و نتایج در جدول 2 ارائه شده است. از رابطه 2 (رباطه Stern-Geary) مقاومت پلاریزاسیون استفاده شده است.

$$R_p = \frac{\beta_a \beta_c}{2.31_{corr} (\beta_a + \beta_c)}$$

که در این رابطه R_p مقاومت پلاریزاسیون، β_a و β_c به ترتیب شیب ناحیه کاندی و آندی منحنی تافل و جریان خوردگی است. [34-36]

با توجه به جدول و داده‌ها می‌توان مشاهده نمود که در هر کیفیت از 4 جریان خوردگی بالا است. همچنین در pH بالاتر از 4 نیز جریان خوردگی به مقدار قابل توجهی بالاتر رفته است که نشان دهنده کیفیت کم پوشش در این pH است.

Ni-P-ZrO$_2$-TiO$_2$ mapping SEM

شکل 3- تصویر و آنالیز از پوشش کامپوزیتی
جدول 2- اطلاعات بدست آمده از منحنی‌های تاfal در pH‌های مختلف

<table>
<thead>
<tr>
<th>pH</th>
<th>3 (S1)</th>
<th>3.5 (S2)</th>
<th>4 (S3)</th>
<th>4.5 (S4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (nA or pA/cm²)</td>
<td>38.04 nA</td>
<td>620.54 nA</td>
<td>4530 pA</td>
<td>4.47 nA</td>
</tr>
<tr>
<td>E (mV)</td>
<td>-328.34</td>
<td>-229.37</td>
<td>-283.96</td>
<td>-308.74</td>
</tr>
<tr>
<td>Rp (kΩ or MΩ.cm²)</td>
<td>106.13 kΩ</td>
<td>22.71 kΩ</td>
<td>12.30 MΩ</td>
<td>7.96 MΩ</td>
</tr>
<tr>
<td>Rate (mm/year)</td>
<td>0.00044205</td>
<td>0.0072106</td>
<td>0.00000526</td>
<td>0.00005198</td>
</tr>
</tbody>
</table>

تحقیقات نیز مشاهده شد. بالارو و همکاران [8] بیان کردند که Ni-P-Al₂O₃ کامپوزیتی را در مقادیر متفاوت pH را ترکیب کرده و با آن‌ها کار می‌کردند. آنها pH 3 را بر روی نمونه سه از سه عدد اول در سه عدد دوم و سه عدد سوم بر روی سه عدد سوم کامپوزیتی کار می‌کردند. آنها pH 3 را بر روی نمونه سه از سه عدد اول در سه عدد دوم و سه عدد سوم کامپوزیتی کار می‌کردند. آنها pH 3 را بر روی نمونه سه از سه عدد اول در سه عدد دوم و سه عدد سوم کامپوزیتی کار می‌کردند. آنها pH 3 را بر روی نمونه سه از سه عدد اول در سه عدد دوم و سه عدد سوم کامپوزیتی کار می‌کردند. آنها pH 3 را بر روی نمونه سه از سه عدد اول در سه عدد دوم و سه عدد سوم کامپوزیتی کار می‌کردند. آنها pH 3 را بر روی نمونه سه از سه عدد اول در سه عدد دوم و سه عدد سوم کامپوزیتی کار می‌کردند. آنها pH 3 را بر روی Nی-P-ZrO₂-TiO₂ کامپوزیتی کامپوزیتی
به وجود منافذ و حفرات کمتر در پوشش نسبت داد که
دسترسی الکترولیت به سطح فلز را به‌طور احتمال است. رسانه الکترولیت به سطح فلز شروع واکنش‌های الکتروشیمیایی روی سطح را به دنبال خوده داشت. انجام واکنش زیر (واکنش ۴) در مناطق کاندی، سطح فلز در حضور اکسیژن و آب باعث تولید یون‌های هیدروکسیل می‌شود.

\[
2H_2O + O_2 + 4e^- \rightarrow 4OH^- (aq)
\]

(۴)

انجام واکنش فوق باعث افزایش مقدار pH می‌شود. با افزایش و تغییر pH در بر روی مناطق کاندی، چسبندگی پوشش بی زیادی در این مناطق کم شده و در نتیجه پوشش از سطح جدا می‌شود. ایجاد محلول‌های خودرس در فصل مشترک تیزی می‌تواند باعث تسرب جدایی پوشش از سطح فلز شود. پوشش کامپوزیتی اعمال شده روی سطح فلز علاوه بر این که از دسترسی پوست‌های خودند به سطح فلز جلوگیری می‌کند، با نشستن اکسیدهای تیتانیوم و زبرکوتونی به‌صورت خاص ساخته کننده ایجاد می‌کند [۲۸].

یکی از اهداف واکنش‌های پوشش‌دهی جلوگیری یا کند کردن سرعت واکنش‌های خودرسی زیرایلی است. در این حالت هر چه میزان ترکیب یا شکاف‌های پوشش کمتر باشد میزان دسترسی الکترولیت به زیرایلی کاهش یافته و در نتیجه مقاومت خودرسی به‌طور هم‌اکنون می‌آید. نتایج نشان می‌دهد که ایجاد واکنش در سطح اکسید تیتانیوم و اکسید زبرکوتونی در پوشش کاهش می‌یابد. حضور ذرات فلز تقویت کننده مقاومت به خودرسی پوشش کامپوزیتی نیکل - فسفر را پیشرفت می‌کند. در پوشش‌های کامپوزیتی حضور ذرات اکسیدی ساختار

در پوشش‌های افزایشی می‌باشد، در نتیجه جریان خوردگی کم و امیدانت افزایش می‌یابد.

لی و همکاران [۲۴] گزارش کرده‌اند که پوشش‌های با زمینه نیکل خودره می‌شوند، نیکل بسیار ترکیب شروع به انتقال می‌کند (واکنش ۱). یکی از واکنش‌های کاندی که در مورد پوشش‌های نیکل در محیط ترکیب با یون‌های کار افتای می‌افتد ایجاد اکسید کاهش شده است (واکنش ۲). فرآیند احیا منجر به افزایش موضعی pH سطح پوشش شده و سبب تشکیل هیدروکسید نیکل می‌شود (واکنش ۳).

تشکیل هیدروکسید نیکل مقداری برای رشد پیشرفت محلول‌های خودرسی می‌باید که این بیده وابسته به ترکیبات در محلول خودند است. محلول‌های خودرسی می‌تواند Ni(OH)₂Cl₂H₂O, Ni₃(OH)₆(CO₃)₂, NiCO₃ شعله و مخلوطی از این‌ها باشد [۲۷]. بدلیل انتقال یادگیری پیسی با لاین‌ها و محلول‌های تولید شده که بر روی سطح فلز رسوب کردهاند سطح‌پسی ایجاد شده و باعث شود واکنش‌های خودرسی به‌طور انجام گیرد [۲۴ و ۲۵]. حضور هر چه بیشتر اکسید تیتانیوم و اکسید زبرکوتونی در پوشش، سطح موتر و مقدار نیکل را کاهش داده و در نتیجه تشکیل هیدروکسید نیکل تیز کاهش می‌یابد. بنابراین در پوشش رسوب کرده در pH=۴ تشکیل هیدروکسید نیکل و سایر محلول‌های خودرسی محدود می‌شود.

علاوه بر این مقاومت به خوردگی بهتر نموده S3 را می‌توان
پوشش ایجاد شده در pH=4 سطحی یکنواخت، بدون ترک و خطر را از خود نشان داد.

پوشش ایجاد شده در pH=4 حاوی پیشترین مقدار ذرات سرامیکی اکسید تیاتیوم و اکسید زیرکونیوم بود.

نتایج آزمون پلاژیاسیون در محلول 3.5% NaCl نشان داد که نمونه پوشش داده شده در pH=4/20 میکروآمپر مربع هر مترمربع (MΩcm²) و کمترین دانه‌ای جریان خوردگی (5200 pA) نسبت به نمونه‌های پوشش داده شده در pH=4/35 و pH=4/30 است.

مراجع

[5] Y. Wang, S. L. Tay, S. Wei, C. Xiong, پوشش از طریق مکانیزم‌های همجنون: تغییر سطح مؤثر تحت حملات خوردگی, تشکیل میکروسلهای گالوانیک بین ذره و زیمین انسداد مسره‌های خوردگی توسط ذرات اکسیدی و تغییر در ریزساختار پوشش رفرش خوردگی را بهبود می‌دهند [۲۷]. حضور ذرات جیرانسای و نجیب اکسید تیاتیوم در ذرات کامپوزیتی پوشش و پوشش信阳 شدن بخشی از سطح پوشش با این ذرات نمجیب، مقادیری از سطح که در معرض میکرو خورد نمی‌پذیرند، می‌گردد را کاهش می‌دهد و نیز این ذرات در شیارها و شکاف‌های میکروی فروپرده و آنها را بر می‌گند. طبیعتاً شناسی باید برای پرکردن این حضارت‌ها دارند. ازطرف دیگر نیز با اضافه شدن ذرات تقوم کننده خشک و نجیب به ذرات کامپوزیتی پوشش منطقه فعال زیمین کاهش می‌یابد که باعث کاهش سطح مسؤل برای احیای کادنیک می‌شود و این موضوع باعث می‌شود که انجام آشکار کاهش بهانه و مقاومت به خوردگی پوشش‌های کامپوزیتی بهبود یابد [۲۷].

در مورد پوشش کامپوزیتی Ni-P-TiO₂-ZrO₂ مشاهده می‌شود که پوشش حاصل از اعمال دانه‌ای جریان ۴۰ میلی‌امپر بر سانتی‌متر مری رفع و استفاده ۳۰ گرم بر لیتر تنبیه و ۳۰ گرم بر لیتر زیکونیا در دمای ۶۰-۶۵ درجه سانتی‌گراد و ۴ سالانه با نقش کمتری داشته که تجربه آن بهبود مقاومت خوردگی زیر لایه فولادی می‌باشد.

۴- نتیجه‌گیری

پوشش کامپوزیتی Ni-P-ZrO₂-TiO₂ الکترکی جریان مستقیم در مقادیر متفاوت سروری زیرلاهی فولادی AISI 316L ایجاد شد.

[20] F. Saeedpur, M. Zandrahimi, H. Ebrahimifar, Effect of ZrO₂ particles on oxidation and electrical behavior of Co coatings electroplated on ferritic stainless steel interconnect, Corrosion Science,

[30] ACI 222R-01, Protection of Metals in Concrete Against Corrosion, American Concrete Institute, Michigan, USA, 2001, 25.
