ساخت کامپوزیت مکس فاز

نویسندگان: علی یزدانی

شیبا حاجی امیری ۱، مهده قاسمی کارکودی ۲، ناصر پورمحمدی وفا ۳

کارشناسی ارشد مهندسی مواد - سرامیک

۱) استاد گروه مهندسی مواد

۲) دانشجوی دکتری مهندسی مواد

* mg_kakroudi@tabrizu.ac.ir

چکیده:

اکثریتی از ترکیب‌های ساختاری با ترکیب M_iAX_n که به مکس فاز‌ها معروف هستند، به عنوان یک ماده تونا مورد توجه قرار گرفته‌اند. یکی از ویژگی‌های مهم مکس فاز‌ها، خاصیت خود-ترمیبی‌سازی‌گری آن‌ها است. دلیل اصلی مورد توجه قرار گرفتن مکس فاز‌ها، مجموعه متحضر به قدری از خواص غیرعمل شوند.

$Ti_3SiC_2 - SiC$ خواص فلزی سرامیک، فیزیکی مکانیکی اینسانی است. یکی از این مکس فاز‌ها، ترکیب استاتوپنیه $\text{Ti}_3\text{SiC}_2-\text{SiC}$ است. خواص مکانیکی این نوع مکس فاز را می‌توان با استفاده از تقویت‌کننده‌های مختلفی مورد کمیون کاری‌یافت (مثلاً نانو فیبر)، به‌طور خاص می‌تواند به دست آورد، که برای تهیه آن‌ها از $\text{Ti}_3\text{SiC}_2 - \text{SiC}$ به عنوان یکی از مکس فاز‌ها استفاده خواهد شد.

اطلاعات مقاله:

دریافت: ۱۲ دی ۱۳۹۷
پذیرش: ۲۰ آبان ۱۳۹۸

کلید واژه:

مکس فاز، کاری‌بندی نانو فیبر، خواص مکانیکی، سنتز در جری

توضیح محققی به نام پاسورم ۱ مطرح شد. در واقع عبارت

خلاصه شده فرمول عمومی است که در فرمول

\[M_{i+1}AX_n\] نیتریدها و کاری‌بندی هگزاگونال و لایه‌ای فلات و اصطلاح چپ

جدول تناوبی هستند که برای اولین بار در سال ۲۰۰۰

۱) Barsoum
ساخت کامپوزیت مکسوزه‌ای Ti₃SiC₂-SiC به روش سنتر درجا و غیر درجا

ایزوتروب هستند [1]. پیوند فازهای مانند MX ترکیبی از پیوندهای فلزی کوارتاسیتی و پیوند است. در پیوند M-X مکس فازها پیوند n-متا اتمی یکی از مقادیر یک تا سه را می‌توان انتخاب کرد. به این ترتیب ترکیبها (Mₓ₃AX₂) (مسری 311) و (Mₓ₃AX₃) (مسری 431) شناسایی شدند. در این نوع ترکیبها، لایه‌های نزدیک به هم و فشرده تشکیل می‌دهند. جدایی از عنصر‌های A به هم جدا شده و اتم‌های x در این مکسفلزهای کوارتاسیتی و فلزی مشخصات ساختاری می‌توان به آنها بپردازد.

در اعمال برای میزان جلب توجه مکسفلزهایی مجموعه‌ای از خواص منحصر به فرد شامل خواص فلزی، سرامیکی، فیزیکی، مکانیکی و کاربرد آنها است. در استفاده از پیوندهای کوارتاسیتی و فلزی مکسفلزهایی مجموعه‌ای از خواص از ساختار لایه‌ای و پیوندهای کوارتاسیتی و فلزی مکس فازها سرچشمه می‌گیرد. بنابراین از مکس فازها به دلیل پیوندهای دما-پایه‌ای دانسته می‌شود. همچنین از مکس فازها در کاربردهای الکترونیکی، کاربردهای دما بالا، به عنوان یک ماده زیست‌سازگار برای ارتباط، ایمنت و کاشت در دندان‌پزشکی، پوشش‌های محافظ، جایگزین کربن در دمای بالا، سنگر و کاربردهای دیگر استفاده می‌شود. مکس فازها خواص مکانیکی فوق العاده در دمای بالاتر از 1000°C دارند. برخی نیز مانند Ti₃SiC₂ و Ti₃AlN، که در دارایی ایزوتروبی خواص مکانیکی به همراه ویژگی‌های حاره‌ای

1 Anisotropy
2 Octahedral
3 Kink band
جدول 1- مشخصات پودرهای تجاری استفاده شده برای ساخت کامپوزیت مکس فاز

<table>
<thead>
<tr>
<th>پودر بلوری (درصد)</th>
<th>ترکت</th>
<th>ساختار خلخال</th>
<th>ذرات ساخته</th>
<th>هگزاگونال</th>
<th>Ti$_2$SiC$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma-Aldrich</td>
<td>45 μm</td>
<td>≥/98</td>
<td>Ti$_2$SiC$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merc. Co</td>
<td>≤/0.5 μm</td>
<td>≥/99</td>
<td>SiC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در این برای تهیه مخلوط‌های پودری پیدا شده و به منظور برآمدسازی مخلوط، پودرهای وزن شده به همراه اندازه با استفاده از حمام الکتروشیمیایی پراکنده و سپس درون ترکیب یا/یا به همراه گلوله آهنیمالی به مدت یک ساعت و با سرعت 250 دور بر دقیقه آسیاب شد سپس دوگاه حاصل در خشکی در دمای 700 °C به مدت 24 ساعت از شش مخلوط پودری توسط پرس گرم تحت شرایط استخراج خلاء 150°C به زمان تنهایی 30 دقیقه و فشار تک محوری 400 میلی پسیکال پس از اتمام فرآیند گرمایش، که پرس گرم را به دست می‌دهد به صورت طبیعی سرد شد و نمونه‌ها از قابلیت و احتمالی گرافیتی از آنها جدا شدند. به منظور آماده‌سازی نمونه‌ها برای ارزیابی فیزیکی و مکانیکی بر روی نمونه‌ها فرآیند برنامه‌ریزی‌کاری مکانیکی انجام شد.

برای اندازه‌گیری چگالی و تخلخل از روش الکتروسیتوس استفاده شد. برای آزمایش فازی از الگوی پراش اینکس 5 و مدلی بررسی ریزساختاری در میکروسکوپ الکترونی روشنی 6 بهره گرفته شد.

همچنین ویژگی‌های مکانیکی همجوش سختی و بکر، استحکام

1 Siemen D 5000: Cu lamp, λ = 1.54 Å, 40 kV, 30 mA, Bruker advance D8: Cu lamp, λ = 1.54 Å, 40 kV, 40 mA
2 Scanning Electron Microscopy, (SEM: Mira3, Tescan, Czech Republic)
3 SCTMC, Micro Vickers Hardness Tester, HV-1000Z

3 1398

3 دوره 8 شماره 3 یازدهم

3 CAI Yan-zhi
2 Yanzi Cai
1 Haoyan Liang
4 Shi-Bo Li
ساخت کامپوزیت مکس فاز \(T_i_3 S_i_2 C_2-SiC \) به روش سنتز درجا و غیر درجا

اماده تهیه شده که تایپی گروه پارش اشعه ایکس از تامین و تهیه گرندینگ قابل مشاهده نیست.

جدول ۳- ترکیب پودر مواد اولیه

| نام مواد | حجم | حجم
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC</td>
<td>۱۰۰</td>
<td>T</td>
</tr>
<tr>
<td>Ti,SiC</td>
<td>۹۰</td>
<td>TS10</td>
</tr>
<tr>
<td>Al,Ti,C</td>
<td>۸۵</td>
<td>TS15</td>
</tr>
<tr>
<td>Si,Al,Ti,C</td>
<td>۸۰</td>
<td>TS20</td>
</tr>
<tr>
<td>SiC,Ti,SiC</td>
<td>۷۵</td>
<td>TS25</td>
</tr>
</tbody>
</table>

۱ Zwich Reel

Eclips MA10

مدل ۲۰۰۳

دوره ۸ شماره ۳ پاییز ۱۳۹۸
مکس فاز خالص می‌توان نتیجه گرفت که از شدت پیک‌های تجزیه شده و فاز TiC افزوده SiC و TiC تشکیل شده است.

اشکال ۱- الگوی پراش اشعه ایکس پودر مکس فاز Ti₃SiC₂ خریداری شده

اشکال ۲- الگوی پراش اشعه ایکس نمونه‌های پرس گرم شده Ti₃SiC₂ با افزودنی کربن، سیلیسیم و آلومینیوم

شده است. این امر نشان دهنده است که مقداری از TiC تجزیه شده و فاز Ti₃SiC₂ تشکیل شده است.
ساخت کامپوزیت مکس‌فاز

به روش سنتز درجا و غیر درجا

شکل ۳- انگوری پرالش ایکس کامپوزیت $\text{Ti}_3\text{SiC}_2-20\text{vol}\%\text{SiC}$ پرس گرم شده در دما $1550\,^\circ\text{C}$

شکل ۴- میانگین چگالی نسبی Ti_3SiC_2 و کامپوزیت $\text{Ti}_3\text{SiC}_2-\text{SiC}$ بر حسب درصد حجمی SiC

تجزیه بخشی از Ti_3SiC_2 به Ti_3SiC_2 دانست که ایکس کامپوزیت Ti_3SiC_2 در نمونه نمایی ۲۵ درصد حجمی را می‌توان به SiC اگلومریزاسیون و همچنین به دلیل ترکیب ایجاد شده در اثر اختلاف ضریب انقباض حرارتی بین Ti_3SiC_2 و SiC و ایجاد تخلخل نسبت داد.

چگالی نسبی کامپوزیت‌های پایه Ti_3SiC_2 با درصد‌های مختلف در شکل ۴ نشان داده شده است.

چگالی نسبی برای نمونه مکس‌فاز خاکستر برای ۹۸ درصد اندازه‌گیری شد در حالی که بیشترین مقدار چگالی نسبی برای کامپوزیت‌های $\text{Ti}_3\text{SiC}_2-\text{SiC}$ و برابر ۹۹ درصد به دست آمد. افزایش چگالی نسبی برای ترکیب ۱۵ و ۲۰ درصد را می‌توان ناشی از

\begin{itemize}
 \item[۱] Agglomeration
\end{itemize}
را می توان با چگالی بالای نمونه مرتبط دانست.
شکل ۵ تصویر میکروسکوپ الکترونی روبیشی از سطح مقطع
شکست کامپوزیت T_{i_3}SiC_{2-20vol\%SiC}
با دو بزرگنمایی مختلف را نشان می دهد که دانه های کشیده
با T_{i_3}SiC_{2}
ساختار لایه‌ای می‌باشد که قابل مشاهده است.

۴- نتیجه‌گیری

برای همه دست آورده یویدر T_{i_3}SiC_{2}
با خلوص بالا و حدف
فازهای Si و Ti با قیمت‌های مختلف با استفاده از
کمک زیرتریهای کربن، سیلیسیم و آلومینیوم سنتز شد است.

جدول ۳- مقادیر سختی ویکر و استحکام خمیش کامپوزیت‌های

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>استحکام شکست (GPa)</th>
<th>ترکیب</th>
<th>استحکام شکست (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{i_3}SiC_{2}</td>
<td>179/86 ± 16/20</td>
<td>T_{i_3}SiC_{2} - 10vol% SiC</td>
<td>7/10 ± 6/33</td>
</tr>
<tr>
<td>127/52 ± 29/22</td>
<td>1/10 ± 1/11</td>
<td>T_{i_3}SiC_{2} - 15vol% SiC</td>
<td>0/10 ± 5/24</td>
</tr>
<tr>
<td>227/08 ± 25/53</td>
<td>1/25 ± 3/25</td>
<td>T_{i_3}SiC_{2} - 20vol% SiC</td>
<td>0/10 ± 5/35</td>
</tr>
<tr>
<td>142/22 ± 8/01</td>
<td>1/15 ± 1/16</td>
<td>T_{i_3}SiC_{2} - 25vol% SiC</td>
<td>0/10 ± 5/61</td>
</tr>
<tr>
<td>121/60 ± 14/61</td>
<td>1/36 ± 1/36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۵- تصویر میکروسکوپ الکترونی روبیشی سطح مقطع شکست کامپوزیت T_{i_3}SiC_{2-20vol\%SiC}
در دو بزرگنمایی مختلف
نتایج به دست آمده نشان داد که مکس فاز تحت Ti₃SiC₂ نسبت گرم در دمای 150°C و فشار 400MPa در دوای فاز ناخالص کمتری است. اگر برای ایکس نمونه حاوی TiC، Ti₃SiC₂ MAX phase شکست نشان دهنده فازهای TiC و Ti₃SiC₂ است. حضور فاز در حضور در بودن اولیه TiC و تجزیه به خشکی از Ti₃SiC₂ نسبت داد بهترین چگالی سیپ و سختی ویکس مربوط به کامپوزیت به دست آمده داشته که دیالانه Ti₃SiC₂-20vol% SiC سیپ فاز وجود نانویی TiC نسبت داد تصاریف میکروکوپ الکترونی رویش از سطح شکست کامپوزیت‌ها، دانه‌های کشنده Ti₃SiC₂ با ساختار لاپلاسی را نشان دادند.

مراجع

