ساخت کامپوزیت مسک فاز Ti$_3$SiC$_2$-SiC به روش سنتز درجا و غیر درجا

نویسندگان:
1. نادر بیوشی
2. علی باشار علی
3. ناصر بیورخوی مقدماتی و فاوا

چکیده:
بنابراین تحقیق‌هایی که به مکس فازها مربوط هستند، به عنوان یک ماده مورد توجه قرار گرفتند. یکی از ویژگی‌های مهم مکس فازها، خاصیت ذخیره انرژی بوده است که در این ارتباط به مکس فاز از خواص پیشین مکس فازها، مجموعه منجر به ویژگی‌ای از خواص تغییر مول، شامل Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باطری‌های خاصیت مکس فازها با استفاده از تقویت‌سازهای مختلف تعیین می‌گردد. لذا این مکس فازها از لحاظ شکاف‌گیری لایه‌ای و همکاری با کانال‌های ترکیبی دو-درگه را می‌توان از سنتز درجا با استفاده از ترکیبی ترکیبی که ترکیبی Ti$_3$SiC$_2$ و تیترکسیکی، ماکتاکی، که از این ارتباط مکس فازها، ترکیبی شده در باط
ساخت کامپوزیت مکس فاز \(Ti_3SiC_2-SiC \) به روش سنتز درجا و غیر درجا

ایزوتروپ هستند [1]. بیودون فازهایی مانند MX ترکیبی از بیودون فلزی کوالانسی و سیاتراست یافت. در بیستون مکس فازهایی

\(\text{M}_{\text{X}} \) نسبتاً ضعیف تر از بیودون MAX است. به دلیل تشکیل بین بیودونهای اتمی در فازهای MX و RMAX، و ترکیبی از ویژگی‌ها آنها از جمله رسانای کاتریک، پایداری حرارتی و ضریب انبساط حرارتی کم پیکسان است [2]. از لحاظ پلیمریمک فاز 211، بک پلیمر (t0) فاز .312 درد آن بین از مجموعه ای از عناصر گروه H از هم جدا شده و اتمهای X لاپیهایی با هم مانند مکانهای آتکاهال نیستند. بک پرکردن، بک اصل برای مقاوم جلب توجه مکس فازها مجموعه ای از خواص منحصر به فرد شامل خواص فلزی سرامیکی، ترکیبی کاتریک و کایرد آنها است که با استفاده از بیودون کوالانسی و فلزی مشخصات مختلفی برای توی به آنها پی برده. برای گروه خواص مکس فازها می توان به قابلیت

مانشین کاتریکی، رسالای حرارتی و کاتریکی فوق العاده

چگالی نسبتاً کم در حدود 4-5g/cm^3 اشاره کرد. این خواص از ساختار لاپیهای بیودونهای کوالانسی و فلزی مکس فازها نشان می‌دهد. بنابراین از مکس فازها به

دیل بیودونهای دما بالای‌تری در ساخته و فضای به

عنوان بسیار استفاده می‌شود. همچنین از مکس فازها

در کاربردهای الکتروشیمیایی، کاربردهای دما بالا، به عنوان

یک ماده زیست سازگار برای ازبندی، اتمیت و کاسته در

دانش پزشکی، پوشش‌های محافظ، یا اسپاتین کریستال

بالا، مسئول و کاربردهای دیگر استفاده می‌شود. مکس فازها

خواص مکاتریکی فوق العاده در دماها بالای از 1000^\circ C

دارند. بخشی نیز مانند Ti_3SiC_2 و TiSiC_2 خواص مکانیکی به

پایان ویژگی‌های حرارتی

\(^2\text{Octahedral}\)

\(^3\text{Kink band}\)

\[^1\text{Anisotropy}\]

\[^{1398}\text{دوره 8 شماره 3 پاییز 1398}\]
جدول ۱- مشخصات پودرهای تجاری استفاده شده برای ساخت کامپوزیت مکس فاز Ti₃SiC₂-SiC

<table>
<thead>
<tr>
<th>ساختار</th>
<th>خلوك</th>
<th>شرکت</th>
<th>پودر بلوری (درصد)</th>
<th>ذرات ساینده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma-</td>
<td>α-{85}</td>
<td>Tocrich</td>
<td>۴۵ μm ≥/</td>
<td>۹۸</td>
</tr>
<tr>
<td>Aldrich</td>
<td>µZ¿Â²Y/‡Y</td>
<td>Merck. Co</td>
<td>≤/۵μm</td>
<td>SiC</td>
</tr>
</tbody>
</table>

در این تحقیق، در حال حاضر، تعداد ۳۹۹ زنده و به بهبود برکناری مکانیسم‌های پودرهای مکس فاز Ti₃SiC₂، تا زمانی که به‌منظور بررسی مقاومت در استرس درون‌ساختاری مکس فاز و مقاومت در استرس درون‌ساختاری مکس فاز Ti₃SiC₂ ساخته شوند.

۲- مواد و روش‌های تحقیق

در پژوهش حاضر، برای ساخت کامپوزیت مکس فاز SiC-Ti₃SiC₂ به روش غیر درجا از پودرهای Ti₃SiC₂-SiC استفاده شد که مشخصات آن همان ساختار بلوری، عناصرهای ذرات و خلوك در جدول ۱ خلاصه شده است.

۱ CAI Yan-zhi
۲ Yanzhi Cai
۳ Baoyan Liang
۴ Shi-Bo Li
نمی‌نمودم که فاز خالص (Ti$_3$SiC$_2$) وSiC، می‌باشد و هیچ فاز مالیه‌ای می‌گردد.

| تام‌منی‌نمودن‌های حاوی ۵ درصد حجمی‌کرین | Ti$_3$SiC$_2$-۵vol%C-
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵</td>
<td>۸۵</td>
</tr>
<tr>
<td>۲۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۷۵</td>
</tr>
</tbody>
</table>

جدول ۲- ترکیب پودر مواد اولیه

| پودرهای اولیه | تام‌منی‌نمودن دارای ۵vol%C-
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ti$_3$SiC$_2$</td>
</tr>
<tr>
<td></td>
<td>SiC</td>
</tr>
</tbody>
</table>

۴- نتایج و بحث

پودر استفاده در این پژوهش به صورت آماده تهیه کرده و در جدیدترین فازریا ایکس اکسی آن در سرعت ۵0 درصد حجمی کرین. سیلیسیم و آلومینیوم (۵vol%-

Ti$_3$SiC$_2$-۵vol%Si-۵vol%Al

SiC، Ti$_3$SiC$_2$ نشان داده است. نتایج به دست آمده از مطالعات فاقد نمونه‌های مکس فاز شکل درصد‌های مختلف کرین، آلومینیوم و سیلیسیم حاکی از آن است که نمونه مکس فاز خالص (Ti$_3$SiC$_2$) تحت بررسی گرم در شرایط ذکر ۱۵۰۰ درجه سانتی‌گراد ۱۵۰۰ درجه سانتی‌گراد و زمان ۴۰ دقیقه دارای گرم فاز ناخالص فرد و سرمایه به حذف عوامل واکنش نکرد و در پوست بوده و در انجام برای مقالات کامپوزیت مکس فاز که تحقیق پی‌بند شده مکس فاز طبق جدول ۴ افزوده شده و تحت فرآیند پرس گرم قرار گرفت.

Ti$_3$SiC$_2$-۵vol%Si-۵vol%Al

فازریا ایکس اکسل. ۲۰۰۰ درصد تهیه شده ایکس مطالعه شده در شرایط ۲۰۰۰ درجه سانتی‌گراد و زمان ۴۰ دقیقه پرس گرم قرار دشرای ۵۰ درصد حجمی تام‌منی‌نمودن دارای ۵vol%C-

Ti$_3$SiC$_2$-۵vol%Si-۵vol%Al

SiC، Ti$_3$SiC$_2$ نشان داده که پیک اصلی این نمونه مربوط به فازریا ایکس هستند. با توجه به اینکه پودر پوست ایکس نمونه SiC و هستند.

۱ Zwich roel

Eclips MA10

۵ مدل ۱۳۹۸

دوره ۸ شماره ۷ یاپیز
مشخصات پایینی می‌توانند نتیجه‌گیری‌هایی از شدت پیک‌های تجزیه شده و فاز تشکیل شده است.

شکل 1- الگوی پراش اشعه ایکس پودر مکس‌فاز Ti_3SiC_2 خریداری شده

شکل 2- الگوی پراش اشعه ایکس نمونه‌های پرس گرم شده Ti_3SiC_2 با افزودنی کربن، سیلیم و آلومینیوم.
شکل 3- انگوی پراش اشعه ایکس کامپوزیت Ti₃SiC₂ – SiC پرس گرم شده در دمای 1550 °C

شکل 4- میانگین چگالی نسبی Ti₃SiC₂ – SiC بر حسب درصد حجمی SiC

تجزیه بخشی از Ti₃SiC₂ با به تبیسه Ti₃SiC₂ در نمونه حاوی 25 درصد حجمی SiC را می‌توان به اکلورپرژاسیون و همچنین بهدلیل ترک‌های ایجاد شده در اثر اختلاف ضریب اتساب حرارتی بین Ti₃SiC₂ و SiC و ایجاد تخلخل نسبی داد.

1 Agglomeration
کامپوزیت‌های Ti₃SiC₂ – SiC شامل سختی و استحکام خمشی گرامش شده است. سختی نمونه مکس‌فاز خالص در Ti₃SiC₂ حدود 7 GPa است که با افزودن SiC به نمونه افزایش ییده و به مقداری در حدود 14 می‌رسد. دلیل اصلی افزایش سختی را می‌توان به حضور ذرات TiC و SiC می‌دانند که هر دو ذرات با سختی بالا هستند، نسبت داد پیشرین مقادیر سختی مورب می‌باشد. ترکیب‌های دیگر به دست آوردن پودر Ti₃SiC₂ با خلوص بالا و حذف فاژهای Si و Ti با اقیانوس، ترکیب‌های مختلفی با استفاده از کمک زیرتری های کربن، سیلیسیم و آلومینیوم سنتز شده است.

جدول 3- مقادیر سختی ویکر و استحکام خمشی کامپوزیت‌های Ti₃SiC₂ – SiC

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>استحکام خمشی (GPa)</th>
<th>سختی (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti₃SiC₂</td>
<td>142/57 ± 10/50</td>
<td></td>
</tr>
<tr>
<td>Ti₃SiC₂ – 10vol% SiC</td>
<td>137/62 ± 10/50</td>
<td></td>
</tr>
<tr>
<td>Ti₃SiC₂ – 15vol% SiC</td>
<td>132/57 ± 10/50</td>
<td></td>
</tr>
<tr>
<td>Ti₃SiC₂ – 20vol% SiC</td>
<td>127/52 ± 10/50</td>
<td></td>
</tr>
<tr>
<td>Ti₃SiC₂ – 25vol% SiC</td>
<td>122/47 ± 10/50</td>
<td></td>
</tr>
</tbody>
</table>

شکل 5- تصویر میکروسکوب الکترونی روبشی سطح مقطع شکست کامپوزیت Ti₃SiC₂-20vol%SiC در دو بزرگ‌نمایی مختلف
نتایج به دست آمده نشان داد که مکس فاز Ti_2SiC_2 تحت فشار گرم در دمای 1500°C و فشار 400-MPa در 20% ناخالص کتیزی است. اگری پرایش ایکس نمونه حاوی TiC_2، Ti_3SiC_2 و SiC و است حضور فاز TiC_2 را می‌توان به ضخور در بردن اولیه Ti_3SiC_2 و تجزیه به شکلی خاص نشان دهد. به دست آمده نشان داد که دیلیز را می‌توان به وجود فاز تانیه TiC_2 نشان داد تصادو تیتر Ti_2SiC_2-20% SiC دانه‌های کتیزه Ti_2SiC_2 با ساختار لایه‌ای را نشان داد.

مراجع

