مطالعه اثر پالادیوم (Pd) و هیدروکسی اپتایت (Hap) بر خواص ساختاری و فتوکاتالیستی نانوذرات پیسمت ترنگنانس (Bi$_2$WO$_6$)

نوع مقاله: علمی پژوهشی
نادر قادری ۱ سید علی حسینی مرادی ۲ ناصر میری ۲

گروه فیزیک دانشکده علوم پایه دانشگاه ملایر ایران
گروه فیزیک دانشجویی دکتری فیزیک، دانشگاه ملایر
کارشناس ارشد دانشگاه تربیت مدرس

*physicphotonic@yahoo.com

اطلاعات مقاله:
دریافت: ۱۹ اسفند ۱۳۹۷
پذیرش: ۱۲ آبان ۱۳۹۸

کلید واژه:
پیسمت ترنگنانس (Bi$_2$WO$_6$)
خواص ساختاری، خواص فتوکاتالیستی، پالادیوم
هیدروکسی اپتایت

در سراسر جهان است. از این رو در دهه گذشته اجبار
محیطیست و زندگی آلودگی از آن، بکی از اولویت‌های

چهار بوده است، بکی از روش‌هایی که برند آلودگی‌ها
استفاده از نانوذرات پیسمت ترنگنانس است.

۱ - مقدمه
در طول دهه‌های اخیر هم‌یوت اقتصادی و فناورانه
فتوکاتالیست‌ها به طور قابل ملاحظه‌ای افزایش یافته است
[۱]. آلودگی آب و هوا یکی از مشکلات اصلی محیط‌زیست
روش اول: گسترش پایه‌دهی TiO2 به ناحیه نوی مرصباً با استفاده از آلاین، یک ماده غیر فلزی یا فاز وسطه مانند
اولین بار در همان مدت است. در سال 1938 از
تیتانیوم اکسید به عنوان کاتیوالیست که در حضور نور
فعال می‌شود در صعبه رنگ سایز محدودیت استفاده شد. اما در
ژاپان ایران ایالت سده واتا فوتونکاتالیسیت به کار رفته و
تیتانیوم اکسید به عنوان سیلیکون معرفي می‌شود.

تا به امروز، نیمه‌رسانی تیتانیوم اکسید به عنوان یک
فوتونکاتالیسیت برای تجزیه بسیاری از ترکیبات آلی شناخته
شده است. منافع‌های به دلیل شکاف اتصال TiO2 به
حقیقتاً ۲/۳ با ماده به تنهایی در محدوده
فرانس و فرانسیسی نزدیک براویکه می‌شود که تها
حدود ۵/۲ از طیف نور خورشید را در بر می‌گیرد. به منظور
استفاده مؤثر از طیف نور خورشید در ناحیه مناسب (λ>400nm)
که برگزاری ناحیه طیف خورشید را شامل می‌شود، توجه
ویژه به فوتونکاتالیست‌هایی که در ناحیه نور می‌ترد
تیتانیوم به طور کلی دو روش برای تولید فوتونکاتالیسیت‌های
فعال در نور می‌ترد بشری است.
2- سنتز پالادیوم/ بیسموت تنگستن (Pd/Bi₂WO₆)

در ابتدا 1/2 گرم Bi₂WO₆ را به 100 میلی لیتر آب مقطع اضافه کرده و به مدت 2 ساعت شدید سپس محلول را با آب دمی‌کرد. در ادامه محلول را با آب دیتونه شسته و در دمای 90°C فشار یک آنتسم فشار شده به مدت 3 ساعت در دمای 50°C کلیسیده شد.

3- سنتز هیدروکسی ایتایت/ بیسموت تنگستن (Hap/Bi₂WO₆)

ابتدا 1/2 گرم Bi₂WO₆ با 200 گرم هیدروکسی ایتایت در 100 میلی لیتر آب مقطع اضافه شد و به مدت 30 ساعت روی همزن مغناطیس قرار داده شد سپس محلول را با آب دیتونه شسته و در دمای 90°C و فشار یک آنتسم خشک شده و به مدت 3 ساعت در دمای 50°C کلیسیده شد.

4- سنتز هیدروکسی ایتایت/ پالادیوم/ بیسموت تنگستن (HAP/ Pd/ Bi₂WO₆)

برای سنتز کل مانند از روش هیدروکسی ایتایت Bi₂WO₆ در ابتدا 0.9 گرم در 30 میلی لیتر اسید نتیزیک 3/5 مولار اضافه شد. سپس محلول را با آب دیتونه شسته و در دمای 50°C و فشار یک آنتسم خشک شده و به مدت 3 ساعت در دمای 50°C کلیسیده شد.

12 ساعت روی همزن مغناطیس گذاشته شد. رسوب به دست آمده از مرحله ی قبل را به انوکالو منتقل شد و در دمای 140°C به مدت 30 ساعت حرارت داده شد سپس رسوب داخل انوکالو را در دمای محیط سرد کرد و با آب دیتونه دو الی سه بار پختش داده و سپس در دمای 80°C خشک شد.
حالت شد. این محلول به مدت 10 دقیقه بر روی همزن مغناطیسی گذاشته شد. سپس 2/3 گرم تنها آمونیوم پالادیوم کلاراید را با 1/65 گرم لیتر هیدروژن کلرید مخلوط کرده و سپس به محلول قبل اضافه شد تا محلول به رنگ سفید درآید. محلول به مدت 20 ساعت روی همزن مغناطیسی گذاشته شد. سپس رسوب به دست آمده با آب دیوپزه شسته و در دمای 90°C در فشار یک ان‌سی‌فر خشک شد. رسوب خشک شده به مدت 3 ساعت در دمای 500°C کلسینه شد.

2-5- آزمایش‌های فتوکاتالیستی

برای بررسی عملکرد فتوکاتالیستی، تخریب آلی‌الدنه فنول (Hap/Bi₂WO₆, Pd/Bi₂WO₆, Bi₂WO₆) تحت نور مرئی مورد مطالعه قرار گرفت. Hap/Pd/Bi₂WO₆ ابتدا وانکش به مدت یک ساعت در تاریکی برابر رسانیده به تعادل گذیده و در نهایت قرار داده شد. در هر آزمایش 100 میلی ppm لیتر از محلول آلی‌الدنه فنول با غلظت 10 به راکتور شیشه‌ای انتقال یافت و به مدت 10 دقیقه تحت نور مرئی .

۶- بررسی خواص ساختاری

![شکل 1- الگوی RDX نمونه‌های Hap و Hap/Pd/Bi₂WO₆](image-url)
مورد نظر مجمعیت و انداره ذرات Hap/Pd/Bi$_2$WO$_6$ و نمونه Bi$_2$WO$_6$ که دارای تنها یک جزء فعال در نور مطلق است، بیشتر می‌باشد. مقدار شکاف انرژی نمونه‌های سنتز شده با روش هیدرورشمال توسط تصاویر SEM تعیین می‌شود (شکل 2). (شکل 2 الف و ب) نشان می‌دهد که Bi$_2$WO$_6$ یک ماده مخلوطی به شکل گل با قطر ۳۰ میکرومتر است که قطر میله‌ها ۳ تانومتر می‌باشد (شکل 2ات و ب) نشان می‌دهد که هر روش ساختونی قرار گرفته است Hap پد که تغییر خاصی در ساختن کامپوزیت ایجاد کند چنین ساختاری نسبت سطح به حجم بالایی دارد و به همین دلیل می‌تواند مدل‌های فتوکاتالیستی مناسب است. چرا که سطح ویژه بالای سبب کوتاه شدن مسیر رسیدن الکترون و حفره ایجاد شده به سطح و بهبود افرادی سرعت واکنش‌های فوتولکتروشیمیایی می‌گردد.

نمودار (C/C₀) بر حسب زمان واکنش تخریب Hap/Bi₂WO₆ آلاینده فنول توسط فوتوناتالایست‌های Pd/Bi₂WO₆ و Pd/Bi₂WO₆ شده است (شکل 5). خطا بودن نمودارها، سنتیکی بسیار دچار اول را تأیید می‌کند.

همچنین مقایسه این نمودار نشان می‌دهد ناسیت فوتوناتالایست‌های Hap/Pd/Bi₂WO₆ در بک مدت زمان ناشی از نمودارهای دیگر بیشتر می‌باشد. همان‌طور که اشاره شده شیب این نمودارها میزان ناپایداری در سرعت واکنش تخریب را نشان می‌دهد.

سنتیک تخریب فوتوناتالایست‌های آلاینده معمولاً از مدل سنتیکی لانگمری تبعیت می‌کند. بر اساس این مدل، سرعت واکنش (r)، متناسب با سطح اشغال شده کاتالیزه (θ)، نابی‌تر در سرعت (k) و غلظت (C) می‌باشد.

\[r = -\frac{dC}{dt} = k\theta = \frac{KC}{1 + KC} \]

در غلظت‌های پایین، معادله سنتیکی لانگمور به صورت شبه درجه اول در می‌آید (معادله 2):

\[\ln \left(\frac{C}{C_0}\right) = kt \]
فوتولیزیک باعث می‌شود درصد تخریب فنول تحت تأثیر قرار گیرد. به این ترتیب گونه‌های فعال ترکیبات تحت SHA به عنوان تهیه‌کننده برای دانستن و تدوین آنها، می‌شوند در حضور این تهیه‌کننده به دام افتاده و در گر آلاینده مورد نظر را تخریب نمی‌کنند و درصد تخریب را کاهش می‌دهند.

شکل 6- نمودار درصد بهره‌برداری 100 محلول ppm 10 مولول در شرایط مختلف استفاده از نور بدون کاتالیست BQ و با استفاده از 1/0 گرم کاتالیست و 1/0 گرم AO (photolysis)
منفی گروه فسفات در طریق تبیر و با تبیر کروستاتیک به حفره‌ها متصل شود و به طور چشمه‌گیری بار تکیک الکترون حرارت را کاهش دهد.

و در کاسیکسی فتوسیمبیا با جذب فوتون‌های مربی‌خراشی فوتونیک نمایندگی سنجش ذرات می‌شود که باعث پرنگینگی الکترونی می‌گردد. با پرنگینگی الکترونی یک والیس کشفیه می‌شود.

$$\text{Hap/Pd/Bi}_2\text{WO}_6 + h\nu \rightarrow \text{Hap/Pd/Bi}_2\text{WO}_6 (h^+ + e^-_\text{CB})$$

پتانسیل اکسایشی بالای خودش مجازت سطح بالا و در نتیجه جذب قوی در فوتونالیست متغیر به اکسایش مستقیم آلاینده‌های ال تیم تجازی فعال می‌شود (معدل 3). اکسید شدن آلاینده → + آلاینده رادیکال‌های فعال هیدروکسیل نیز از راه‌های مختلفی تولید می‌شود. یک از این راه‌ها تجزیه آب (معدل 4) است. راه دیگر تولید آن، واکنش خریده با $$\text{OH}^-$$. رادیکال‌های هیدروکسیل یک اکسیده با پتانسیل اکسایشی اکسیده 3/2 الکترون ولت هستند که به صورت غیرگزینشی عمل می‌کنند.

$$h^+ + H_2O \rightarrow H^+ + \text{OH}^- \text{ (5) }$$

$$h^+ + \text{OH}^- \rightarrow \text{OH}_2 \text{ (6) }$$

در شکل 7 تولید آلاینده فنول به وسیله گازه‌های Hap/Pd/Pd/2WO3, Hap/2WO3, Bi2WO6 و Pd/2WO3 توانایی تولید آلاینده‌های فنول به دست آمده و در نتیجه تولید آلاینده‌های فنول به دست آمده. مقدار آلاینده جذب شده روی فوتونالیست به میزان 29/35% مقدار اولیه آلاینده فنول به دست می‌آید.

دیل دیگر افزایش فعالیت فوتونالیست پوشیده شده با مکان است مربوط به آلاینده فسفات باشند. بار Hap

مطالعه اثر بالادیوم (Pd) و هیدروکسی ایمنیات (Hap) بر خواص ساختاری...
پالادیوم در سیستم‌های Bi₂WO₆، به انتقال بار سطحی و دستیابی به جهدی کامل، حفره‌های نوار فلزی کمک می‌کند.

Hap/ Pd/ و Pd/ Bi₂WO₆ به صورت جدید عمل نموده و باعث می‌شود

الاپیندهات زمان بیشتری در تماس با سطح فوتوکاتالیست

قرار گرفته و به این دلیل باعث تخریب بیشتر آلایندگی

به صورت (Hap) به صورت

به صورت Bi₂WO₆ همزمان و کارآمد می‌تواند حفره‌های نوار فلزی

را با قدرت اکسیداسیون قوی، و الکترون‌های نوار هدایت را

با قدرت کاهش قوی در دسترس الاینده قرار دهد. در نتیجه

با جهت به دلایل ذکر شده باعث می‌شود فوتوکاتالیست

به صورت Bi₂WO₆ در Hap/Pd/Bi₂WO₆

های سیستم‌های آنتی‌فیتوکاتالیستی

پایداری نانو فوتوکاتالیست

هجه Hap/Pd/Bi₂WO₆

شکل 7- دصرد تخریب محلول 10 فنول در تاریکی، در حضور نور بدون فوتوکاتالیست و در حضور نور مرئی با استفاده

از g/100 آنتی فیتوکاتالیست های مختلف.
تخرب آلاله‌فونل تحت تاثیر نورمنی مورد بررسی قرار گرفت. نمونه‌های Pd/Bi2WO6 برای دو مدت زمان بیش از 380 دقیقه از آلاله‌فونل به نور خشکی و به سطح صورت ضایعاتی کرد. سپس به آوازه و به آسانی توسط شستشوی ساده بازیابی شد. پس از خشک شدن مجدد در دو مدت زمان دو دچاره‌ای در تریال تخمین می‌شود.

شکل 8- بازیابی فوتواتکاتالیست فنول.

3- نتیجه‌گیری

در این پژوهش خواص ساختاری نمونه‌های Pd/Bi2WO6 به عنوان Pd/Bi2WO6 و Pd/Bi2WO6 و Pd/Bi2WO6 با روش اشعه ایکس (XRD) و تصویر برداری میکروسکوب الکترونی (SEM) و نمود بررسی گرفت. نتایج آنها نشان داد که هیدروزیمی و هیدروکسیالیت در نمونه‌های Pd/Bi2WO6 توانایی جذب H2O و توانایی ترکیب آلایند فنول به همراه H2O را دارند. در این مطالعه اثر بالادویوم (Pd) و هیدروکسی اتیل‌ی (Hap) بر خواص ساختاری...
Pd/Bi$_2$WO$_6$, Hap/Bi$_2$WO$_6$ एवं Pd/Bi$_2$WO$_6$ आफ़ाइया पिछा कर देता है। फ़िल्टर या दोस्ती शुद्ध मोनो-हैलो से हाप/Pd/Bi$_2$WO$_6$ है, जिन्हें द्वारा ताप-स्तरीय व द्वारा हाप/Pd/Bi$_2$WO$_6$ रूप में आपसी होती है। बिंदु-Bi$_2$WO$_6$ की तरह ही होता है।

associated visible-light-driven photocatalytic activities. Small, 3(9), 1618-1625.

