Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

[Body of the document in Persian]

1 - مقدمه

اگر روش‌هایی موسوم به الکتروولیز پلاسمای و استفاده از آن در ستز و فروآوری مواد و نانومواد در گزارش‌های علمی دیده می‌شود که در آنها یکی از این دسته‌ها الکتروودیز فشاری الکتروولیز، معمولاً با نام الکتروولیز پلاسمای گازی یا میکروپتریک است. این نیاز به الکتروودیز به جای اینکه از الکتروولیز جامد (ویا معمولاً فلزی) وارد محلول الکتروولیزی شود و واکنش‌های

چکیده: الکتروولیز پلاسمای از روش‌هایی است که در آن از برهمکنش پلاسمای با محلول استفاده می‌گردد. در این مقاله، از کیفیت ویژگی‌های الکتروولیز پلاسمای مناسب این الکتروولیز پلاسمای و تکنیک پلاسمای هوایی برای سطح محلول استفاده می‌شود. مسائل تجزیه و تحلیلی این دانه که به محض شروع تحلیل الکتریکی شکل در شهرت میدان تاریک و در محل (مایل پلاسمای محلول) شروع به تبدیلی می‌کند به تغییر سرعت الکترینی را قرار داده و در نهایت در کفف طرف تهیه‌شده. FESEM جداسازی می‌گردد. ت Bitte translate this text into English?
سنتر میکروپویز نیمه هادی $\text{Ag}_2\text{O}$ با روش الکتروپلیز پلاسما و مشخصه‌بایی اینکی آن

توسط گروه مینگدو [۸] با موفقیت انجام گردید. با استفاده از محلول آبی $\text{AgNO}_3$ و $\text{HAuCl}_4$ در الکتروپلیز پلاسما کاندید آگرون، نانوذرات نقره و طلا توسط ونگ و همکارانش [۹] استفاده شد و از آن‌ها در کاربردهای خواصکی و نشان‌دهنده پروتئین ترپوین قلب استفاده گردید. با به کارگیری محلول آبی کریستال همین گروه، سنتر نانوذرات مغناطیسی $\text{Fe}_3\text{O}_4$ توسط MRI استفاده گردید [۱۰]. با استفاده از چیزمان الکتروپلیز پلاسما ساده و دوگانه گاز هلیوم و محلول یا مخلوط محلول مانند نیترات نقره، تراکلرید هیدرید طلا، کلرید آهن (II) و (I) و حتى محلول آبی نمک طعام با آندهای فلزی مختلف، سنتر نانوذرات نقره، طلا و فربیت آهن از سوی شرکت و همکارانش [۱۱] گزارش شد. سنتر نانوذرات $\text{TiO}_2$ از الکتروپلیز پلاسما آرگون کاندی و فویل تیتانیوم آن‌دی به همراه محلول آبی شامل اسید هیدروفلوئوریک در سطح آن نیز توسط اسلامی و همکاران [۱۲] گزارش شد. این گزارش‌ها در کنار مقادیر بسیار زیاد و جدیدی که در مراجع به شکم می‌خورد حاکی از آن است که استفاده از الکتروپلیز پلاسما در سنتر مواد از جذابیت ویژه ای از سوی پژوهش گران برخودار است و هنوز هم سوال‌ها و پژوهش‌های زیادی در این جهت وجود دارد. همچنین که استفاده کار در اکثر الکتروپلیز‌های پلاسما از گازهای پیوسته درمنه همچون آرگون و هیلیوم بروز است. استفاده شده است. با توجه به استفاده از یک چیزمان ساده الکتروپلیز پلاسما در هواي معمول و محلول آبی نیترات نقره میکروپویز پلاسما توپودیم گران مقاله حاضر به یک پاره درصد تناوبی موجود در آن به دست آمد … نادرد و به سادگی با استفاده از هر گاز دلخواهی و صرف‌آور با ایجاد تخلیه الکتریکی در آن می‌توان یک مسیر رسانا در نقطه الکترود (کاندید آن) ایجاد کرده فرآیند الکتروپلیز را کلید زد، ۵ با تغییر نوع، ردیاب و فشار گازهای بالای محلول به راحتی می‌توان الکتروپلیزهای متنوع پلاسما را ایجاد کرد، ۳ با کم و زیاد کردن ولتاژ تخلیه الکتریکی و شکل موج و فرکانس آن به اساس می‌توان اشکال مختلفی از پلاسما مانند تخلیه الکتریکی ناباین، قوس الکتریکی، سدی‌الکتریکی، میکروپویز، رادیوفکسیون و … که در کدام محتوای الکتروپلیز و پیوسته مختلف دارد ایجاد کرده و اینکی آن با محلول دارد بررسی قرار داد. و ۳ با تغییر قطعیت پلاسما، می‌توان الکتروپلیز پلاسما آن‌دی یا کاندید که هر کدام فیزیکی نشان و محصولات متحضر به فرد خود را دارد. ترتیب داد.

گزارش‌های فراوانی از سنتر نانوذرات و یا مواد غیر نانو با روش الکتروپلیز پلاسما در مراحل دیگر می‌شود که به چند نمونه از آن‌ها اشاره می‌گردد. نانوذرات نقره و طلا با استفاده از محلول اسید عملی و آندهای نقره و طلا و به گزارش میکروپلاسما آرگون در فشار جو (در نقطه کاندی) توسط سانتریان و همکارانش [۷] با دست آمد. همچنین در استفاده از محلول آبی نیترات نقره به عنوان الکتروپلیز زیر آندی از جنس فویل بی‌پتای در کاندید نانوژل فشار جو سنتر موفقیت نقره و استعمال آنها در تقویت پراکندگی رامان از سوی آندی گزارش شد [۹]. سنتر نانوذرات اکسید سیسی (Cu$_2$O) از طریق الکتروپلیز پلاسما آرگون و محلول آبی $\text{NaCl}$-\text{NaOH}-\text{NaNO}_3

۱ Dielectric Barrier Discharge (DBD)
محصول (در فاصله کمتر از 1 mm و ولتاژ 15 kV) پودر سیاه رنگ در نقطه تبسباسی محصول شکل گرفته و به pH مورور در کل ظرف خشک و در کف آن تنفسین شد. محلول از مقدار 4 به مقدار 20 در انتهای آزمایش (که تا ساعت به طول می‌انجامد) کاهش یافته، این پودر سیاه رنگ توسط دستگاه سانتریفیوز جدی و هیچ‌گاه با آب دوبار تقطیر شسته شد.

شکل 1 - طرح وارده کلرولیز از انتقال و فاصله کمتر از 15 میکرومن.

برای انجام آزمایش از یک چیدمان کلرولیز پلاسمای ساده استفاده می‌شود.[15] محلول مورد نظر در داخل یک بستر ریخته شده و یک ورقه نازلی به جای یک میله فولادی به قطر 3 mm به ترتیب، به عنوان آند و کاند انتخاب می‌گردد. قسمتی از آن در داخل محلول فرو برده و محلول شده و در فاصله کمتر از از سطح آن (که به یک پیچ میکرومنی قابل تنظیم است) قرار می‌گیرد. انتهای دیگر الکترود نیز به یک منبع تغذیه ولتاژ بالا متصل می‌گردد. با روشن کردن منبع تغذیه و افزایش آرام ولتاژ آن هوا را بین نوک کاند میخی و سطح محلول جدار تخلیه الکتریکی شده و تبدیل به پلاسمای هوایی می‌شود. به محض تشكل پلاسمای ماده‌ای که جنس آن به محلول استفاده شده بستگی دارد) در محل تبسباسی محلول تشكل می‌شود. در شکل 1 طرح وارده آب از این آزمایش نشان داده شده است.

برای انجام آزمایش کلرولیز پلاسمای از محلول‌های آبی استفاده شد. بدنی منظور دایموهای (در AgNO₃ استفاده شد. بدنی منظور دایموهای (در UV-Vis-NIR فاینر-فروسر نزدیک (به‌طور مشخص الکتریکی محصول استفاده شد. از طرف سنجی NiZn برای اطلاعات بیشتر از صحت شناسایی پودر FTIR برای گرفته شد.
شکل ۳- الگوی XRD پودر سیاه به دست آمده از آزمایش.

از نتایج XRD مشخص شد که تمام پیک‌های پراشی ظاهر شده در شکل ۲ (بجز قله‌های ریزی که در شکل مشخص شد) همگی به سوپر آکسید نقره (Ag۲O) بایسته کار ۵۴۵-۵۱ مربوط هستند. این بیان دارای فاز تک میل ساده یا ثابت- شکل‌که ۳.۴۸ Å، a=0.۵۸ Å و c=۵.۵۰ Å و زاویای باشته بسطاً ۱.۷=۱.۰۱، a=۵.۵۰ Å و c=۵.۵۰ Å و ۹۰=۹۰ درجه می‌باشد. پیک‌های پراشی ریز دیگری هم در دیده می‌شوند (مشخص شده با علامت "•") که متعلق به Ag۲CO۳ نیستند. مقایسه آنها با الگوهای استاندارد XRD نشان می‌دهد که مربوط به Ag۲CO۳ هستند. این بدان معناست که کل مجموعی اصلی Ag۲O مقادیر Ag۲CO۳ اندکی از ناحیه (Ag۲O) بیشتر (Ag۲O) که ناشی از دی اکسید کربن موجود در هوا و محلول است) نیز در الکترولیز پلاسمای تولید

*۵ Monodisperse
*۴ Bulk

کیهای ۴ آن باشد.
برای اطمینان بیشتر از فرمول شیمیایی محصول به دست آمده، توزیع عنصری پودر سیاه با آنالیز EDS به دست آمد.

جدول 1 - نتایج آنالیز EDS

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصد اتمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>28.28</td>
</tr>
<tr>
<td>O</td>
<td>59.81</td>
</tr>
<tr>
<td>Ag</td>
<td>11.81</td>
</tr>
</tbody>
</table>

پودر سنگین شده.

شکل ۴- طیف EDS پودر سنگین شده.

شکل ۳- تصویر FESEM از پودر Ag₂O₄ به دست آمده از الکتروپلاسم.

که نمودار آن در شکل ۳ و داده های آن در جدول ۱ اورده شده است.
استفاده می‌شود این بدان معنیست که آنتی‌بیوتیک انجام شده فقط تایید می‌کند که نمونه مورد نظر در داری نقره، اکسیژن و کربن است. این نتیجه با آنالیز XRD پیش بینی می‌کند ماهه به دست آمده آگ سیستم در درصد Ag2O3 در آن وجود دارد کاملاً همکاری و کمی از Ag2CO3 برای تخمین میزان ناخالصی می‌توان از آنتی‌بیوتیک استفاده کرد. در آنتی‌بیوتیک، نمونه مورد نظر به آرامی از یک دما تا دمای مطلوب گرم می‌شود و تغییر جرم ایجاد شده در آن (که ناشی از تجزیه شیمیایی و فرار گازهای آزاده است) نتیجه گیرد. در Ag2CO3 حین گرم شدن گاز CO2 آزاد می‌کند و کاهش وزن می‌یابد و از این رو به راحتی می‌توان درصد کربنات نقره در محصول اصلی را پیدا کرد. آنتی‌بیوتیک حرارتی گزرش شده در مربع (15) نشان می‌دهد که پودر سیاه سنتر شده حاوی کربنات نقره به میزان 6/3 درصد مولی است.

از داده‌های EDS به خوبی مشاهده است که پودر سنتر شده حاوی نقره و اکسیژن بوده و مقدار کمی نیز کربن دارد. این به ظاهر درصد اتمی اکسیژن (60٪) حدود دو برابر بیشتر از درصد اتمی نقره (28٪) است و ممکن این شیب ایجاد شود که پودر به دست آمده آگ سیستم در دارد اکسیژن به تقریب را می‌توان به حضور ناخالصی کربنات نقره مرتبط کرد به این صورت که چون نسبت اکسیژن به نقره آن 1/2 (از پراکسید نقره) (2) بیشتر است انتظار می‌رود که درصد اکسیژن در محصول نهایی قدری بیشتر از درصد نقره باشد. این این موضوع نمی‌توان توجه درستی برای علم دارای نظر نفر بودن درصد اکسیژن به تقریب باشد زیرا حتی اگر هم محصول هر کربنات بود به این صورت به تقریب نفر بودن اکسیژن EDS برای نقره می‌شود. در جواب به این گفت که آنتی‌بیوتیک نسبت به عنصر سیک مانند کربن و اکسیژن حساسیت و دقت کمی کمتری دارد و عموماً داده‌های آن به صورت کیفی

![DRS](https://example.com/drs.png)

### شکل 5

این UV-Vis طیف از پودر به دست آمده در چیدمان به منظور مشخصه‌بندی این دستگاه از میکروپودر سنتر شده DRS طیف جذبی UV-Vis با روش پودری 1 در پاژ

1. Dispersive Reflection Spectroscopy
است ویلی در طول موج‌های بلندتر شفاف می‌باشد. این نوع Ag₃O₂ جذب مختص مواد نیمه هادی ایست. اکسید نقره n بوده و طبق گزارش‌های تجاری عنوان شده در مراجع، این نازک میکروشیری از آن تهیه شده به روش الکتروصورپ و با رسوپ لنزی (NIR) گاف انرژی 1.1 ـ 1.1 ـ 1.1 می‌باشد [16]. شیب‌سازی نیز مقدار گاف انرژی 1.1 ـ 1.1 ـ 1.1 را برای این عادی پایین‌ترین می‌کند [16]. مقالات تجاری دیگری (بر اساس فراوی‌های شیمیایی) هم در مراجع به چشم می‌خورد که مقادیر مشابه (سلاماً 1.1) را برای گاف انرژی گزارش کرده اند [20]. در مورد مستقیم و با Ag₃O₂ غیر مستقیم بودن گاف انرژی Ag₃O₂ نیز نتیجه مطمئنی در مراجع ارائه نشده است. برای مثال در مرجع [16] گفته شده است که این عادی دارای گاف انرژی مستقیم با اندازه 1/1 ـ 1/1 ـ 1/1 است. در حالی که شیب‌سازی ارائه شده در مرجع [18] این مقدار از گاف را (به ترتیب با مقدار 1/1 ـ 1/1 ـ 1/1 به گذاش یک شبکه نمود) با استفاده شرکت 1/1/1) طبق این فرمول، ضریب جذب نوری و یک نیمه هادی برای فوتون‌های با انرژی بیشتر از گاف به صورت زیر فرمول بیان می‌شود:

\[ \alpha(1-h)v = B(hv - E_g)^m \]

که در ان α ضریب جذب، h نایب پلانک، v فرکانس نور m ضریب انتزاعی و Eg قدر انرژی ماده است. با استفاده از این فرمول، محاسبه گاف انرژی با فرض گذار غیر مستقیم و (ح) با فرض گذار مستقیم.

اکانت این طبق کمالاً مشخص است که ماده مستقیم شده دارای جذب پلاسای تیز برای طول موج‌های کوتاهتر از 1350 nm.
به کارگیری روش "برازش طیف جذب" (با نام اختصاصی ASF) یک توان به جای ضریب جذب $\alpha$ در رابطه (1) مستقیماً از طیف جذب $I$ استفاده کرد و گف انتزی و نوع گذار را تعیین نمود [22]. به طور نتیجه‌گیری، رابطه تاک بر حسب طیف جذبی به شکل زیر در می‌آید:

$$\frac{1}{Ah} = C(hv - E_g)$$

که در آن $C$ یک ثابت عدید است. حال اگر طیف جذب در این رابطه قرار داده شود و بر حسب انتزی، فوتون فردی، $hv$ رسم شود با ترسری یک خط راست می‌ماند.

صف ترین قسمت نمونه و تقطيع آن بر محور انتزی $m$ توان گاف این با دست آورده نمونه بر حسب انتزی فوتون برای گذار غیر مستقیم (با $m=2$) و گذار مستقیم (با $m=1/2$) و نیز ترسری خط مماس بر آنها، به ترتیب، در شکل های 6-4 و 6- انجام شده است. مقایسه دو نمونه 6-6 و 6- بر وضع مشخص است که فرض مستقیمی گاف (پیشنهاد $m=0.5$) نمودار خطی بسیار بهتر و کامل تری نسبت به فرض غیر مستقیمی بوده آن $m=2$ دارد. این نمونه دارای دو ناحیه کاملاً خنثی است که بررسی مستقیم در آنها انتزی $0.94 \text{ eV}$ را به دست خواهد داد. فرض غیر مستقیمی بودن گذار $m=2$ با برای گذار با $0.88 \text{ eV}$ برای گذار انتزی بیشتر به چند هم‌خوانی خوبی با مقادیر تجاری گزارش شده در مراجع دارد و از نظر راصیان خوبی می‌توان ادعایی کرد که فرض غیر مستقیمی گاف (پیشنهاد $m=1/2$) متغیری است. با این تفسیر با این گفت که میکروکراید $\text{Ag}_2\text{O}_3$ تولید شده با $\text{Ag}_2\text{O}_3$. 

1. Absorption Spectrum Fitting
2. Absorbance
جذب قوی در ۵۴۰ cm⁻¹ مربوط به ارتعاش Ag–O بوده و تابید دیگری بر این ولتاژ است که ماهه سنتر شده Ag₂O₂ می‌باشد. جذب در ناحیه ۱۲۵۰–۱۴۵۰ cm⁻¹ نیز به Ag₂O و ارتعاشات بین کربنات CO₃²⁻ مربوط است و از وجود ناخالصی Ag₂CO₃ در نمونه خبر می‌دهد. جذب‌های دیگر C=O و H=O در ناحیه ۱۷۰۰ و ۲۲۰۰ cm⁻¹ نشانه وجود O–H می‌باشد.

در این مقاله از یک دستگاه اکسیژن سحاب ساده با جیدمان بین-پی-الکتروولیت کاتدی در هواه معمول و اکسیژن بوجود آمده در کتالیست وارده شده و به ویژه در حالت ناسازی روانه می‌شود.
سطح میکروپریود نیمه هادی $\text{Ag}_2\text{O}$ به روش الکترولیز بالاسما و مشخصه‌بایی اینکی آن


محلول آبی نیترات تقریب استفاده شد. مشاهده شد که به محض شروع الکترولیز، بویر سیان رنگی در محل برهمکنش پلاسماس با محلول تولید می‌شود. آنالیز‌های XRD نشان داد که فرآوری FTIR و UV-Vis-NIR EDS FESEM این ماده $\text{Ag}_2\text{O}$ می‌باشد. یافته‌سنجی مرئی-فرآوری نزدیک میکروپریود $\text{Ag}_2\text{O}$ نشان داد که یک نیمه هادی با گاف انرژی مستقیم به مقادیر $\text{eV}$ و $\text{Ag}_2\text{O}$ نازک $\text{Ag}_2\text{O}$ (اکثر مقادیر $\text{eV}$) (اندازه اکثر $\text{eV}$) است. در مقایسه با مقادیر گزارش شده در مراجع برای لیاپان می‌باشد. شاید بتوان اناهیز نانومتریهای این لیاپانی نازک و برخوردار کوانتومی دارای پیشنهادی از آنها را دلیل بیشتر بودن گاف انرژی در آنها و یا وجود ناخالصی $\text{Ag}_2\text{O}$ در ناحیه تاریک تر نکته گاف $\text{Ag}_2\text{O}$ به دست آمد در این مقاله دانست. از اینجا که گاف $\text{Ag}_2\text{O}$ سیلیکون $\text{Ag}_2\text{O}$ به مقادیر $\text{eV}$ (و جمعی نیمه هادی $\text{Ag}_2\text{O}$-باریک قلمداد می‌شود و می‌تواند نامزد خوبی برای اشکارسازهای فرآوری و جوزه ترومولاتریک باشد.

مراجع


